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Machine learning techniques are a common solution used to solve a variety of networkmanagement tasks. Often,
a network administrator chooses the model to deploy based on offline information, such as model performance
and system load. Yet, network traffic is inherently dynamic making it hard to select an optimal model that can
work throughout ever changing conditions. In this paper, we make the case that, instead of having to select the
optimal candidate model based on offline information, systems should adapt based on the network conditions
observed. We present a system design that takes as input a set of candidate models and their features, and
adaptively selects the better configuration as a function of the network and system conditions.

CCS Concepts: •Networks→Networkmeasurement;Networkmonitoring.

Additional KeyWords and Phrases: Traffic analysis; Dynamic configuration; Machine Learning

1 INTRODUCTION
Nowadays Machine Learning (ML) techniques have become a common solution used to solve a
variety of networkmanagement tasks.MLmodels simplify the identification of complex relationships
between network traffic and important events occurring at different network layers. Thus, the
networking community has developed ML models to help with traffic analysis tasks like QoE
inference, traffic classification, intrusion detection, and more [2].
ML inference tasks are commonly identified by a three steps pipeline: the first step involves

ingesting raw network traffic, where traffic undergoes multiple operations, including header parsing,
flow tracking and reassembly, and more; the second step performs feature extraction, computing
statistics and encoding information to prepare for the model; the third and final step inputs the
processed features to the ML model (e.g., random forest, neural network) for the final inference.
Conventionally, the performance of these pipelines is evaluated at training time based on the quality
of the input features and the trained model type. Unfortunately, different factors can impact the
actual performance of the model. For example, the inability of a measurement system to cope with
the amount of incoming traffic can terminate in packet losses that dramatically impacts the quality
of the produced features and the final model performance.
To meet different tradeoffs across model performance and system constraints, different models

are available for each task. For example, in the case of video quality inference, Bronzino et al. [3]
presented a study of the impact that different feature sets have on the accuracy of video quality
inference models as well as on the costs that collecting such features has on themeasurement system.
However, in most cases, models trained offline in a lab setting provide little to no representation of
the system’s ability to capture traffic nor the impact that packet loss can have on model performance.
For these reasons, the users of these models have to decide a priori on which model might best fit
their deployment, configuring their measurement system accordingly [3, 4]. Yet, network traffic is
inherently dynamic and varies throughout the day due to continuous shifts in usage, making it hard,
if not impossible, to select an optimal configuration that canwork throughout these changes. Further,
substituting such configurations requires to first observe that the system is not capable of processing
the traffic, and then manually change the configuration causing further loss due to reboot times.
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Fig. 2. Processed over injected packet rate

In this paper, we argue that the best advantage point to understand a system’s ability to process
traffic and generate the features for a target model is the system itself. Instead selecting the optimal
candidate model based on offline information, systems should adapt based on up-to-date information
of the traffic observed as well as on the system’s ability to extract the requested features for a specific
traffic load. Towards this, we present the high level design of a system that takes as input a set of
candidate MLmodels, and the features they require as input, and adaptively selects the better fitting
configuration as a function of the network and the system conditions.

2 USE CASE: VIDEOQUALITY INFERENCE
To demonstrate the impact that the offline choice of a model can have, we focus on the task of video
quality inference from encrypted traffic. We partially recreate the experiment from Bronzino et
al. [3] and train two candidate machine learning models to infer the resolution of video streaming
applicationsover time.The twomodelsuse twodifferent feature sets: thefirstmodel employsnetwork-
layer features, e.g., packet counters and throughput, while the second model uses application-layer
metrics gathered fromobserving packet patterns generated by video applications, i.e., video segments
sizes. We evaluate the performance of the two models in perfect conditions, i.e., with no packet loss,
as well as the impact that packet loss can have on the best performing model. From Figure 1 we
observe that at no loss the model that uses application layer features does indeed outperform the
model that uses network layer features by more than 15%. However, when we introduce packet loss,
the performance deteriorates rapidly, and the network-layer based model starts to outperform the
other model at around 15% loss.
We then implement the two models in a real system, Retina [4], and evaluate the ability of the

system to extract the required features at varying traffic loads. To emulate realistic traffic, we deploy
the system on a testbed with two servers connected by a 100gbps programmable switch. On the
second server we deploy TRex [1] injecting an IMIX ”SFR” profile, a combination of various traffic
templates that we enhance with video traffic, at different rates. In Figure 2 we show the amount of
packets per second the system is capable of processing with respect to the injected rate. We observe
that, when processing application-layer features, the system starts dropping packets at around 12
Mpps, a 39% lower processing capacity compared to the network-layer features.
These two experiments show that, as traffic loads increase, it might be beneficial to lower-cost

configurations and models as a preferred solution to maximize performance. More broadly, they
support the argument that it is challenging to train a single model that works in every condition,
suggesting the need for an adaptive system, as described in the next section.

3 DYNAMICCONFIGURATION
In this section, we propose the high level design of a system that adaptively choses the bestMLmodel
to use at any point in time according to the trade-off between model accuracy, system capabilities,
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Fig. 3. Scheme of the system

and network load. Starting from a pool of candidate models, and their underlying features to collect,
the system comprises three key building blocks, as illustrated in Figure 3.
Model Selection. The model selection module has the goal of tracking the system performance and
select the best candidate model given the observed environment. The module consists of two parts
which create the capabilities for the system to self adapt this configuration without intervention or
reboot. The profiler analyzes the performance of the system itself (CPU and memory usage, number
of instructions required per feature, etc.). Themonitor continuously aggregates information from the
profiler as well as statistics from the Packet Capture module (e.g., packets received, packets dropped,
etc.). Using this information, the monitor decides whether it is necessary to update the features
collected by the system in the likelihood of reaching a bottleneck.
Packet Capture. To support high network rates and fast packet processing, the system relies on
state-of-the-art packet capture libraries process. Further, the system enables the implementation of
packet filters to drop early any unnecessary flow and focus on traffic of interest.
Feature Creation. The Feature Creation module is the final step of the packet processing pipeline
and it is in charge of transforming raw packets in features to be used byMLmodels. The module is
composed of a set of workers that compute the features selected by the monitor as fast as possible.
After processing, theRenderer aggregates the collected features andcompute thefinal representations
to be used by the MLmodels (e.g., averages, min/max, etc.).

In summary, the system consists of three fundamental building blocks, each strategically designed
to optimize the tradeoff betweenmodel accuracy, system capabilities, and network context. Together,
these modules enable our system to seamlessly adapt remaining attuned to the inherent dynamicity
of network traffic.

4 CONCLUSION
In this paper, we have proposed the design of a system that adapts in real time to varying network
conditions to select the best features and models for ML-based network management tasks. Such
a system can be used to simplify the deployment of ML models in in concrete applications for
network administrators and operators tomore easily rely onmachine learning solutions to drive their
networks. Our first implementation shows encouraging early results. We are currently developing
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a prototype that implements the whole system from the feature extraction components, the ML
models, to the monitor that selects features andMLmodels in real time.

This early work presents several interesting challenges to overcome and future work directions to
explore. One key challenge involves expanding the array of feature sets to satisfy the requirements
of various machine learning models. Furthermore, exploring more complex profiling metrics beyond
the scope of packet loss alone promises to be an interesting avenue of research. With the inclusion of
these metrics, our systemwill be more proficient in extracting the most suitable feature set for the
current network context, thus ensuring the choice of the best model.
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