
The Cost of Packet Loss on ML-Based
Traffic Analysis

Johann Hugon
ENS Lyon

Paul Schmitt
Cal Poly

Francesco Bronzino
ENS Lyon

Abstract—Machine Learning (ML)-based traffic analysis relies
on a data processing pipeline consisting of multiple steps that
filter, process, and collect statistics, or features from raw net-
work traffic. These steps are typically performed by in-network
measurement systems deployed in existing network fabric (e.g.,
programmable switches) or using off-the-shelf hardware (e.g.,
commodity servers). In both deployment scenarios, these systems
come with limited processing budgets that must be finely tuned
to precisely collect the required features. Unfortunately, the ever
growing traffic volume on modern networks can exhaust these
budgets, ultimately resulting in packet loss. In this paper, we
investigate the impact of packet loss on the performance of ML-
based traffic analysis systems. As losses introduce bias in the
final features set provided to the machine learning model, we
hypothesize that they will negatively impact model performance.
We evaluate this hypothesis by analyzing the performance of two
different ML models—service classification and QoE analysis—
trained on a dataset of video flows, and we measure the impact of
two different packet loss models: probabilistic and bursty losses.
Our results show that sporadic packet loss has little impact on
performance. Conversely, bursty losses, which are more common
for packet processing systems, can lead to a significant negative
impact.

I. INTRODUCTION

Machine Learning (ML) has become an essential tool for
network traffic analysis, enabling tasks ranging from service
classification to intrusion detection with unprecedented accu-
racy [1]. Recent studies have demonstrated ML’s effectiveness
in analyzing high-speed and encrypted traffic [2], [3], [4],
where traditional rule-based approaches often fail [5]. How-
ever, deploying ML systems for traffic analysis on live, high-
speed links requires a preprocessing pipeline that is able to
operate within strict system constraints [6], [7], [8]. Prepro-
cessing pipelines typically consist of several critical stages:
packet extraction from the link, protocol parsing, filtering, and
feature computation. These operations can be performed either
in real-time (online) or asynchronously (offline), with each
approach presenting distinct challenges. Yet, in both scenarios,
the systems responsible for these actions face fundamental
operational constraints that can lead to packet loss, which has
the potential of compromising the quality, or even correctness,
of features provided to downstream ML models.

Various approaches to network traffic analysis face different
constraints. Traditional tools like Tcpdump[9] allow capturing
network traffic, but often struggle with high-speed links due to
kernel network stack bottlenecks [10]. While storing traces for
offline usage might reduce processing and memory constraints,
the cost of uploading large data volumes to a remote location

becomes critical during high traffic times. More modern tech-
niques [11], such as zero-copy packet processing through tech-
nologies like DPDK [12] or XDP [13], can prevent memory
and storage exhaustion by reading packets directly from NIC
memory or cache, but require the entire pipeline to process
packets at line-rate—when processing capacity cannot match
network throughput, packets are inevitably dropped, resulting
in information loss that propagates to ML model features.
In-network solutions like in-switch ML [14], [15] offer an
alternative approach but provide very limited resources due to
the need to perform routing in parallel with analysis tasks.

Of course, the dynamic nature of network traffic makes it
nearly impossible to design measurement systems that operate
without packet loss under all conditions, if not at the cost
of reduced model accuracy. Even pipelines that perform well
in controlled environments often fail when confronted with
real-world traffic pattern[16], [17]. This raises a fundamental,
yet under-explored question: How does packet loss affect the
performance of ML-based traffic analysis systems? Recent
work [18] has shown that packet loss can have significant
effects on the performance of ML models. However, while this
work proposes solutions to mitigate such degradation, it fails
to provide a comprehensive understanding of the underlying
impact that packet loss has on the performance of ML models.
In this paper, we aim to fill this gap by answering two key
questions:

Q1. Does packet loss affect model performance independently
of its distribution? Recent work by Babaria et al. [18] has
demonstrated that packet loss can heavily impact accuracy
for service identification models. However, they solely
used a simplistic probabilistic model for loss, where
every packet is considered independently. In contrast,
in operational environments, packet loss typically occurs
in bursts during periods of system stress [19]. Rather
than isolated drops, these bursts—ranging from a few
packets to thousands—disrupt the temporal continuity
of features. We hypothesize that this pattern of loss
more accurately reflects real-world conditions and has a
disproportionately negative impact on model performance
compared to random individual packet drops.

Q2. In the presence of loss, does accuracy degradation depend
on ML model input features? In their paper, Babaria
et al. [18] discuss how lost packets lead to missing or
distorted features that may compromise model accuracy

2025 IEEE 31st International Symposium on Local and Metropolitan Area Networks (LANMAN)

979-8-3315-1478-5/25/$31.00 ©2025 IEEE

for various service identification solutions. Without com-
plex (i.e., computationally expensive) stateful connection
tracking, these inconsistencies become difficult to iden-
tify. For example, in DPDK-based systems, incoming
packets can overwrite older, still unread packets in the
buffer before processing completes, creating undetected
gaps in the data. In such cases, the model may receive
features that are inconsistent with the true state of the
network. However, while these distortions can be evident
in the case of service identification, where only a handful
of packets are used to build features, they might be less
evident for scenarios like video startup time inference
where features are mostly aggregates collected across
many (i.e., hundreds if not thousands) of packets.

To answer these questions, we focus our work on two dis-
tinct ML-based traffic analysis tasks: (1) service identification,
a classification problem; and (2) video startup delay inference,
a regression problem. For these use cases, we study how packet
loss affects performance metrics for these by applying both a
probabilistic model that randomly drops individual packets,
as well as a two-state Markov chain model that simulates
realistic bursts of packet drops. We find that the impact
of sporadic drops is noticeable, but negligible below low
thresholds. However, bursty drops can have a large impact on
model performance, even with a low probability of occurrence.

The remainder of this paper is organized as follows: Sec-
tion II discusses relevant prior work; Section III details our
experimental methodology; Section IV presents results across
both use cases; finally, Section V summarizes our findings
and their implications. All analysis code and results are made
available as a Jupyter notebook1 to ensure reproducibility.

II. RELATED WORK

The quality of datasets is widely recognized as a crucial
factor affecting the overall performance of ML models [20],
[21]. While prior research (such as Mauri et al. [22]) has
investigated the impact of data poisoning, where adversaries
deliberately modify training data, our work specifically ad-
dresses data quality issues at inference time rather than during
model training.

Foroni et al. [23] generated variations of the same dataset
with different noise levels to measure the impact on task
performance. Our approach is similar in that we introduce
controlled noise—specifically packet loss—at predetermined
rates to evaluate performance degradation. However, our work
is distinguished by its application to network systems and
consideration of domain-specific constraints such as bursty
packet losses.

More recently, Cavitt et al. [24] investigated the negative
effects of packet drops in power systems. They employed
machine learning models to detect losses and implemented
various replacement policies to mitigate the impact. Their
research demonstrated that performance degradation could be
minimized through appropriate data replacement strategies.

1https://github.com/ENSL-NS/Cost-of-Packet-Loss

Service Identification Video startup delay inference

Packets size, count Packets size, number
Packets inter arrival time Throughput
Bytes per packets Segments size, count
TCP Flags, Window, RTT Segments duration
Bytes per packet Inter segments time
Bytes in flight
Retransmissions

TABLE I: Features Sets

While their work focused on spoof detection in power sys-
tems, our study examines detectable but untraceable losses in
network environments.

Yang et al. [25] addressed packet loss in encrypted traf-
fic classification by developing an Anti-Packet-Loss method
based on a Masked Autoencoder. Their approach intentionally
masks portions of training traffic data to enhance the encoder’s
ability to reconstruct missing information. Their evaluation
showed 90% classification accuracy even with 15% packet
loss, significantly outperforming conventional deep learning
methods. Although their research targets the same problem of
packet loss during inference, our work differs by evaluating the
impact on machine learning models that are not specifically
designed to handle packet drops.

Most recently, Babaria et al. [18] proposed FastFlow a so-
lution to mitigate the effects of packet loss on ML models for
service identification. FastFlow employs a sequential decision-
based classification model that leverages a collection of LSTM
models trained with reinforcement learning to infer traffic
classes using the first few packets of a flow. In the evaluation,
the authors show that FastFlow is more resilient to packet
loss than other state-of-the-art ML models. However, their
work solely applies per-packet probabilistic losses and does
not provide a comprehensive understanding of the underlying
impact that packet loss has on the performance of ML models.
To the best of our knowledge, our work is the first to
systematically study the impact of packet loss on ML-based
traffic analysis systems, using both probabilistic and bursty
loss models and on multiple traffic analysis tasks.

III. METHODOLOGY

In this section, we discuss the methodology used to evaluate
the impact of packet loss on ML-based traffic analysis systems.
We begin by describing the two use cases we selected for our
analysis: service identification and video startup time. We then
discuss the dataset used for our analysis, including the packet
loss models applied.

A. Traffic analysis tasks

We focus our analysis on two well-studied tasks in the net-
work community: Service identification [26] and ideo startup
time inference [2].
Service identification. Service identification is a typical traffic
classification task [4], [27]. The task involves classifying
network traffic at the flow level into corresponding applica-
tions, such as YouTube and Netflix. We focus particularly

2025 IEEE 31st International Symposium on Local and Metropolitan Area Networks (LANMAN)

on early application identification, which consists of using
the first few packets—typically ten or fewer—to identify the
application [26]. In our scenario, we utilize the first ten
packets and derive the set of features described in Table I.
These features are based on network parameters such as
byte quantity in each direction, packet inter-arrival time, and
transport metrics like TCP windows or bytes in flight. All
features listed in Table I are divided by direction: client-to-
server and server-to-client. Where possible, they are further
subdivided into various statistical metrics, including standard
deviation, average, maximum, minimum, median, kurtosis, and
skewness. This approach aims to capture hidden patterns that
raw features may not effectively reveal. While some existing
works use fewer packets (e.g., only the first four), we elected to
use ten packets as a best-case scenario, recognizing that using
fewer packets would render the analysis even more susceptible
to packet loss and distortion of input features.
Video startup time inference. Video startup time inference
is a fundamental task in Quality of Experience (QoE) analysis
that involves predicting the duration between a user’s request
to play a video and the moment playback actually begins.
This metric is widely recognized as a critical factor affecting
user satisfaction and engagement with video streaming ser-
vices. In our scenario, we leverage network traffic features
collected during the initial connection and buffering phases to
infer the startup delay experienced by users. Unlike service
identification, which relies on the first few packets, video
QoE inference typically utilizes larger temporal windows of
aggregated data—generally spanning multiple seconds, such
as ten-second intervals. We specifically focus on startup time
prediction for two strategic reasons: first, it enables us to
validate the hypothesis that larger windows of aggregated data
might exhibit greater resilience to packet loss; and second,
it presents a regression problem rather than classification,
thereby allowing us to evaluate the impact of packet loss on
a different class of machine learning tasks with continuous
output variables. For this use case, we do not consider fea-
tures collected from the transport layer, as they have been
demonstrated to be less effective for this task [2]. Instead, we
focus on features related to the video segments, such as the
number of segments downloaded, the size of each segment,
and the time taken to download each segment. We also include
features related to the inter-segment time, which is the time
between the end of one segment and the start of the next. This
approach allows us to capture the dynamics of video streaming
and how they relate to startup delays. Finally, as listed in Table
I, we extract features about traffic volumes.

B. Dataset and Model Training

Dataset. Our analysis is based on a subset of the dataset
collected by Bronzino et al. [2] in their work on video
quality inference. The dataset consists of 9,213 labeled traces
from four major video streaming providers (Netflix, YouTube,
Amazon Prime Video, and Twitch), which we split into two
parts: a training set comprising 7,390 traces (80.21%) and a
testing set containing 1,823 traces (19.79%), with some traces

excluded due to labeling issues. Subsequently, each trace was
divided into separate traces for individual flows, and the data
was filtered to include only video-related flows. This process
yielded a training dataset of 2,535,163 flows and a testing
dataset of 627,524 flows, maintaining a similar split ratio of
19.84%. The slight variation in percentages occurs because
some traces contain more flows than others.
Model training. For both tasks, we selected Random Forest
[28] as classification and regression algorithm, as previous
research has demonstrated its superior precision and recall
with lower false positive rates for our use cases [26], [2].
For model training, we employ AutoGluon [29], a widely
adopted AutoML library. AutoGluon automatically explores
effective combinations of input features and hyperparameters
to generate the most effective model. Note that the goal of this
paper is not to achieve the best possible model performance,
but rather to evaluate the impact of packet loss on the
performance of ML models. Therefore, we did not perform any
hyperparameter tuning or feature selection beyond what Au-
toGluon provided. To mitigate overfitting, we constrained the
minimum sample split to 10 and limited the maximum depth
of the trees to 10. These constraints reduce the likelihood of
capturing insignificant noise patterns and enhance the model’s
generalization capabilities. The model was trained on 80% of
the dataset without any application of packet loss, ensuring that
it learned from clean, uncompromised data. Packet loss was
introduced exclusively during testing to simulate real-world
inference conditions, based on the assumption that the model
had been trained on a lossless dataset. We evaluated the impact
of varying packet loss rates on model performance using the
weighted F1 score as our primary metric for classification.
This weighted scoring approach was chosen to prevent mis-
interpretation of results due to class imbalance in the dataset,
while the F1 score itself provides a balanced measure that
accounts for both precision and recall. For the regression task,
we used the error distributions to observe a detailed analysis
of the model’s performance.

C. Loss Models

We aim to evaluate the impact of packet drop on model
performance by implementing two distinct loss models: a
probabilistic model and a bursty model.
Probabilistic loss model. In this initial model, we establish
a probability p of packet drop. This probability is applied
independently to each packet within a flow and to each flow
within the dataset. This approach yields an aggregate loss
measure for the dataset, expressed as a percentage of total
packets lost. By increasing the value of p, we systematically
increase the overall percentage of loss in the dataset. While
percentage of packet loss is a common evaluation metric
in network systems, this approach has certain limitations,
particularly in its inability to adequately capture the nuanced
behavior of packet loss within real-world network pipelines.
Bursty loss model. The second approach aims to more
effectively characterize burst drops by representing them as

2025 IEEE 31st International Symposium on Local and Metropolitan Area Networks (LANMAN)

Accept Drop1− p1 p2

p1

1− p2

Fig. 1: State Transition Diagram of the Burst Models

a two-state Markov chain. Markov chains have been widely
employed to model packet drops for decades [30], [31].
They are particularly effective for describing bursts of drops
by defining a ”good” state and a ”bad” state, along with
the various probabilities of transitioning between them or
remaining in the current state. In our implementation, these
two states correspond to the Accept state and the Drop state,
as illustrated in Figure 1. As shown in the figure, p1 represents
the probability of transitioning from the Accept state to the
Drop state, while p2 denotes the probability of remaining in
the Drop state. By calibrating these transition probabilities,
we can simulate different frequencies and intensities of burst
drops. A high value of p1 increases the likelihood of burst
initiation, representing the probability of network degradation
in a system. Meanwhile, p2 represents the probability of
continuing the burst of dropping packets, which leads us to
interpret 1 − p2 as the probability of resolving this drop
condition. The lower the value of p2, the more rapidly the
pipeline will respond to the burst and recover from the drop
condition.

Application of loss models to the dataset. We apply our two
loss models to the test portion of the dataset, which comprises
627,524 flows containing a total of 201,164,351 packets. The
resulting packet drop statistics are presented in Tables II and
III. In Table II, the first column represents the probability
p of dropping a packet, the second column shows the total
number of remaining packets after applying the losses, the
third column displays the number of packets dropped, the
fourth column indicates the resulting percentage of packet
loss, and the final column the quantity of missing flows. Table
III follows a similar structure, with the distinction that the
first column p from Table II is replaced by two columns, p1
and p2, representing the transition probabilities of our two-
state Markov chain. The data demonstrate that the probabilistic
drop closely aligns with the overall percentage of packet loss
observed in the trace. Notably, even a relatively low probability
of burst initiation (p1) can result in substantial packet loss,
exceeding 10% of the original trace.

It is important to note that the loss models are applied
before extracting the first N packets of a flow. Consequently,
in scenarios where machine learning (ML) models require data
from the first ten packets and packets between positions five
and nine are dropped, features are subsequently extracted from
packets zero to four and from ten to fourteen. This approach
ensures that the ML model consistently receives the same
quantity of packets for each flow, maintaining consistent input
dimensionality despite varying packet loss patterns. However,

p # Packets Diff % # Missing Flows

0.0 200,164,351 0 0.00 0

0.005 199,164,584 999,767 0.50 145
0.01 198,162,375 2,001,976 1.00 288
0.02 196,158,686 4,005,665 2.00 446
0.05 190,155,893 10,008,458 5.00 2,680
0.1 180,148,648 20,015,703 10.00 9,946

TABLE II: Traces after application of probabilistic loss

p1 1− p2 # Packets Diff % # Missing Flows

0.0 0.0 200,164,351 0 0.00 0

0.005 0.1 190,644,830 9,519,521 4.76 10,800
0.01 133,593,296 66,571,055 33.26 168,647
0.001 33,560,174 166,604,177 83.23 399,910
0.0001 4,285,699 195,878,652 97.86 506,266

0.01 0.1 181,957,332 18,207,019 9.10 25,673
0.01 100,084,829 100,079,522 50.00 271,475
0.001 18,320,521 181,843,830 90.85 474,142
0.0001 2,186,921 197,977,430 98.91 551,860

TABLE III: Traces after application of burst loss

as mentioned in II and III, a large drop can lead to dropping
the entire connection. Thus, it is mandatory to include these
missing flows when evaluating the performance of the models,
as forgetting them can lead to high accuracy despite a high
drop rate.

IV. ANALYSIS

In this section, we describe our analysis on the two use-
cases: service identification and video quality inference. For
both use-cases, we first present results on probabilistic losses,
followed by results on bursty losses.

A. Service Identification

Probabilistic. We apply the probabilistic loss model to the test
partition of the dataset, with results presented in Table IV.
In this table, p = 0.0 represents the baseline scenario with
no packet drops, where data is served to the model without
alteration. This serves as our benchmark for comparison;
the F1 score reaches 0.971 under these optimal conditions.
We note that accuracy and F1 score exhibit similar values,
indicating both strong precision and recall across most classes,
even without any packet drops. We also highlight that, for
results with packet drops, we treat the missing connections as
misclassified to avoid artificially inflating performance metrics.

At p = 0.005, we observe only a minor reduction in F1
score, which remains robust at 0.967. A slightly higher loss
rate of p = 0.01 further decreases the F1 score to 0.963,
though the impact remains relatively small. However, when
the loss rate increases to p = 0.02, the F1 score drops more
noticeably to 0.954, indicating the beginning of performance
degradation. Beyond this threshold, the decline becomes more
pronounced, with the F1 score decreasing to 0.925 at p = 0.05
and further to 0.879 at p = 0.1. These results demonstrate
that while low levels of packet loss (p < 0.02) have minimal
effect on classification performance, significant degradation
occurs once packet loss exceeds p = 0.02, with substantial

2025 IEEE 31st International Symposium on Local and Metropolitan Area Networks (LANMAN)

p Accuracy F1 Score

0.0 0.972 0.972

0.005 0.967 0.967
0.01 0.964 0.963
0.02 0.954 0.954
0.05 0.927 0.925
0.1 0.885 0.879

TABLE IV: Impact of probabilistic losses on Service
Identification use case

p1 1− p2 Accuracy F1 Score

0.0 0.0 0.972 0.972

0.005 0.1 0.926 0.918
0.01 0.618 0.551
0.001 0.265 0.208
0.0001 0.152 0.108

0.01 0.1 0.878 0.862
0.01 0.432 0.363
0.001 0.159 0.117
0.0001 0.087 0.061

TABLE V: Impact of burst losses on Service Identification
use case

performance decline at higher loss rates. However, while the
impact is noticeable, we observe that results remain acceptable
even at high loss rates, with F1 scores close or above to 0.8.
Burst. As illustrated in Table V, we apply the burst model to
the test dataset. First, we notice that even when 1− p2 is low,
the F1 score remains more affected than with probabilistic
losses, at equivalent percentages of drops. This can be ex-
plained by examining Table III, where drops for p1 = 0.005
and p2 = 0.1 eliminate only 4.76% of the overall packets
while missing 10, 800 flows, whereas its equivalent in the
probabilistic model at p = 0.05 drops 5% of the traffic for
merely 2, 680 flows. This demonstrates the potential context
loss caused by burst patterns. When burst losses occur, the
model may miss entire connections or long portions of them,
leading to a more significant impact on performance.

However, as 1 − p2 reaches 0.01, the F1 score greatly
drops, falling below 0.6. This suggests that burst loss, even at
moderate levels, has a more detrimental effect on performance
compared to the probabilistic loss model. As 1− p2 increases
further to 0.001, where a large portion of the traffic has
been dropped, the decline in performance becomes more
pronounced. This indicates that burst loss patterns have a
significant negative impact on the model’s ability to main-
tain performance, even with a slightly lower probability of
occurrence.

B. Video Startup Delay Inference

Probabilistic. Similarly to the previous use case, we apply
the probabilistic loss model to the test partition of the dataset,
with results presented in Figure 2a. In the figure, we show
error distributions for the regression task, as the difference
between the real startup time collected from the video player
and the predicted startup time from the model. The box plots

show both median and interquartile ranges (IQR). We observe
a slight impact on the median error as p increases. Starting
at −129 for p = 0, we observe a phase of stagnation with
a median at −140 for p = 0.005; −144 for p = 0.01; it
begins to drop at p = 0.02 with a median of −170; it further
decreases at p = 0.05 to −246 before ultimately reaching
−344 at p = 0.1. Overall, while the error increses, the median
remains relatively stable until p = 0.05. This indicates that
the model remains relatively consistent while suffering from
packet drops. While we observe greater variation for IQR
values, symptomatic of the model predicting less consistent
values, the overall performance remains relatively stable. This
confirms the intuition that using aggregates over many packets
makes the model less sensitive to sporadic packet loss.
Burst. In contrast to probabilistic losses, for the burst loss we
observe a much greater impact as soon as we reach 1− p2 =
0.1 (as illustrated in Figure 2b), with the median dropping
to −230 and −308. We do not show in the figure the results
for higher burst lengths for space saving reasons. However, we
observe that the median drops heavily to −806 for p1 = 0.005
and −2114 for p1 = 0.01. This indicates that the model is
significantly affected by burst losses, even at low probabilities
of occurrence. The IQR also increases significantly, indicating
a wider range of errors in the predictions.

To understand the reason behind this behavior, we analyze
the features used by the model. We first study the feature
importance obtained at training time using the mean and
standard deviation of accumulated impurity decrease within
each tree of the Random Forest model. We observe that the
most important features all relate to the download of video
segments during the initial streaming phase. This is reasonable,
as the model attempts to capture how quickly the video
player is capable of downloading the necessary video buffer
required to start reproduction. In particular, we observe that
the most important feature is the average time to download a
video segment, which effectively represents this dynamic (i.e.,
smaller values suggest higher download rates). We then study
the distribution of the values of this feature across different test
datasets (shown in Figure 3). We observe that the distribution
of the feature is significantly affected by the burst loss model,
with median values increasing as drops increase. This result
suggests that key packets, used for the segment identification
technique [2], are being lost, leading to a significant increase
in the detected time to download video segments.

Overall, this result shows that, contrary to expectations, even
a model that relies on aggregates over many packets can be
significantly affected by burst losses.

V. CONCLUSION

In conclusion, this study provides valuable insights into how
packet loss within the feature extraction pipeline impacts ma-
chine learning model performance. We present comprehensive
results for two use cases, evaluated under both probabilistic
and burst loss models. Our findings demonstrate that while
probabilistic losses with low p values (p < 0.02) have minimal
impact on model performance, burst losses cause significantly

2025 IEEE 31st International Symposium on Local and Metropolitan Area Networks (LANMAN)

No loss p=0.005 p=0.01 p=0.02 p=0.05 p=0.1

Loss rate

−4000

−3000

−2000

−1000

0

1000

2000

3000

E
rr

or
in

m
s

(r
ea

l
-

pr
ed

ic
te

d
)

(a) Probabilistic loss

No loss p1=0.005
1− p2=0.1

p1=0.005
1− p2=0.01

p1=0.01
1− p2=0.1

p1=0.01
1− p2=0.01

Loss rate

−10000

−8000

−6000

−4000

−2000

0

2000

E
rr

or
in

m
s

(r
ea

l
-

pr
ed

ic
te

d
)

(b) Burst loss

Fig. 2: Impact of loss on the ideo Startup Delay Inference use case

No loss p1=0.05
1− p2=0.1

p1=0.05
1− p2=0.01

p1=0.1
1− p2=0.1

p1=0.1
1− p2=0.01

Loss rate

0.00

0.25

0.50

0.75

1.00

1.25

1.50

A
ve

ra
ge

ti
m

e
(s

ec
on

d
s)

Fig. 3: Average time to download a video segment

more degradation even at equivalent drop rates. This holds
true for both service identification and video startup delay
inference tasks, counter-intuitively to the notion that models
that use aggregate statistics as input features are less affected
by packet loss. To enhance transparency and reproducibility,
after acceptance we provide a Jupyter notebook2 containing all
code, data, analyses, and visualizations to enable replication
of our findings.

REFERENCES

[1] M. A. Ridwan et al., “Applications of machine learning in networking:
A survey of current issues and future challenges,” IEEE Access, 2021.

[2] F. Bronzino et al., “Inferring streaming video quality from encrypted
traffic: Practical models and deployment experience,” Proc. ACM Meas.
Anal. Comput. Syst., 2019.

[3] T. Mangla et al., “emimic: Estimating http-based video qoe metrics from
encrypted network traffic,” in Network Traffic Measurement and Analysis
Conference (TMA), 2018.

[4] R. T. Elmaghraby et al., “Encrypted network traffic classification based
on machine learning,” Ain Shams Engineering Journal, 2024.

[5] M. Shen et al., “Machine learning-powered encrypted network traffic
analysis: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, 2023.

[6] T. Swamy et al., “Homunculus: Auto-generating efficient data-plane ml
pipelines for datacenter networks,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, 2023.

[7] S. Liu et al., “Serveflow: A fast-slow model architecture for network
traffic analysis,” 2024.

[8] G. Wan et al., “Cato: End-to-end optimization of ml-based traffic
analysis pipelines,” 2024.

2https://github.com/ENSL-NS/Cost-of-Packet-Loss

[9] The Tcpdump Group, “Tcpdump,” https://www.tcpdump.org/, 2025.
[10] Q. Cai et al., “Understanding host network stack overheads,” in Pro-

ceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021.
[11] D. Cerović et al., “Fast packet processing: A survey,” IEEE Communi-

cations Surveys & Tutorials, 2018.
[12] The DPDK Project, “Data Plane Development Kit,” https://www.dpdk.

org, 2025, [Accessed: 2025-04-08].
[13] Høiland-Jørgensen et al., “The express data path: fast programmable

packet processing in the operating system kernel,” in Proceedings of the
14th International Conference on Emerging Networking EXperiments
and Technologies, ser. CoNEXT ’18, 2018.

[14] Y. Li et al., “Accelerating distributed reinforcement learning with in-
switch computing,” in Proceedings of the 46th International Symposium
on Computer Architecture, 2019.

[15] R. Parizotto et al., “Offloading machine learning to programmable data
planes: A systematic survey,” ACM Comput. Surv., 2023.

[16] D. Arp et al., “Dos and don’ts of machine learning in computer security,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022.

[17] A. D’Amour et al., “Underspecification presents challenges for credi-
bility in modern machine learning,” J. Mach. Learn. Res., 2022.

[18] R. J. Babaria et al., “Fastflow: Early yet robust network flow classifica-
tion using the minimal number of time-series packets,” arXiv preprint
arXiv:2504.02174, 2025.

[19] F. Bronzino et al., “Traffic refinery: Cost-aware data representation for
machine learning on network traffic,” Proc. ACM Meas. Anal. Comput.
Syst., 2021.

[20] Y. Gong et al., “A survey on dataset quality in machine learning,”
Information and Software Technology, 2023.

[21] Z. Abedjan et al., “Detecting data errors: where are we and what needs
to be done?” Proc. VLDB Endow., 2016.

[22] L. Mauri et al., “Estimating degradation of machine learning data
assets,” J. Data and Information Quality, 2021.

[23] D. Foroni et al., “Estimating the extent of the effects of data quality
through observations,” in IEEE 37th International Conference on Data
Engineering (ICDE), 2021.

[24] J. Cavitt et al., “Detecting cyber attacks with packet loss resilience for
power systems,” Sustainable Computing: Informatics and Systems, 2022.

[25] C. Yang et al., “Anti-packet-loss encrypted traffic classification
via masked autoencoder,” in Wireless Artificial Intelligent Computing
Systems and Applications, 2025.

[26] J. Holland et al., “New directions in automated traffic analysis,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery,
2021.

[27] S. Sengupta et al., “Exploiting diversity in android tls implementations
for mobile app traffic classification,” in The World Wide Web Conference.
Association for Computing Machinery, 2019.

[28] L. Breiman, “Random forests,” Mach. Learn., 2001.
[29] N. Erickson et al., “Autogluon-tabular: Robust and accurate automl for

structured data,” 2020.
[30] E. N. Gilbert, “Capacity of a burst-noise channel,” The Bell System

Technical Journal, 1960.
[31] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”

The Bell System Technical Journal, 1963.

2025 IEEE 31st International Symposium on Local and Metropolitan Area Networks (LANMAN)

