
THESE

pour l'obtention du grade de Docteur, délivré par

l’ECOLE NORMALE SUPERIEURE DE LYON

Ecole Doctorale N°512
InfoMaths - Informatique et Mathématiques de Lyon

Discipline : INFORMATIQUE (Informatique)

Soutenue publiquement le 15 décembre 2025, par :

Johann HUGON

Pipelines d'extraction de métriques pour la supervision du trafic réseau sous
contraintes système

System-Constrained Feature Extraction Pipelines for Network Traffic Monitoring

Après avis de :

Chadi BARAKAT, Directeur de recherche, Centre Inria Sophia Antipolis - Méditerranée Rapporteur

Kandaraj PIAMRAT, Maîtresse de conférences HDR, Nantes University, LS2N, INRIA Rapporteure

Devant le jury composé de :

Chadi BARAKAT, Directeur de recherche, Centre Inria Sophia Antipolis - Méditerranée Rapporteur

Kandaraj PIAMRAT, Maîtresse de conférences HDR, Nantes University, LS2N, INRIA Rapporteure

Anthony BUSSON, Professeur des universités, Université Lyon 1 Examinateur

Cristel PELSSER, Professeure des universités, Université catholique de Louvain Examinatrice

Kevin VERMEULEN, Chargé de recherche, LIX, Ecole Polytechnique Examinateur

Francesco BRONZINO, Maître de conférences HDR, ENS de Lyon Directeur de thèse

À la mémoire de ma mère, Dominique Basset.

A B S T R A C T

Machine Learning (ML) techniques are widely used in academic literature and of-
ten demonstrate excellent performance on paper. However, many of these proposed
methods fail when deployed in real-world environments. In networking, this gap is
primarily due to the common practice of overlooking the data collection and feature
extraction pipeline during evaluation. While ML models perform well on ideal datasets,
their accuracy deteriorates when features are mangled or incomplete, often caused by
packet losses or limitations in the feature extraction systems that cannot process all
traffic in real time. In practical network monitoring, operators and researchers require
tools capable of delivering real-time insights. Such tools must balance computational
complexity by limiting the types of features they extract to cope with line rate. They
also face constraints in terms of available data at any given moment, which can be
restricted by memory or system capabilities. These real-world limitations significantly
impact the reliability and scalability of ML-based network monitoring solutions.

In this thesis, we address the challenge of deploying ML-based network monitoring
tools in real-world environments by designing feature extraction methods that are both
system-aware and scalable. We focus on making feature extraction compatible with
high-speed traffic processing, taking into account packet loss and limited computational
resources.

R É S U M É

Le Machine Learning (ML) est largement utilisé dans la littérature académique et
présente souvent d’excellentes performances sur le papier. Cependant, de nombreuses
méthodes sous-performent lors de leur déploiement dans le monde réel. Dans le monde
des réseaux, cela est principalement dû à la pratique courante d’ignorer la phase de
récolte de données et de l’extraction des métriques de l’évaluation des modèles. Les
modèles de ML sont donc évalués sur des jeux de données parfaits, ce qui entraine une
détérioration de leurs performances (précision) lorsque les métriques sont altérées ou
incomplètes. Cette dégradation est entrainée par la perte de paquets ou une limitation
des ressources de calcul causées par l’incapacité du système d’extraire les métriques en
temps réel, à la vitesse du lien. Dans le cas concret de la supervision du trafic réseau,
opérateur et chercheur ont besoin d’outils capables de leur fournir des aperçus de l’état
du réseau en temps réel. Ces outils doivent trouver le point d’équilibre de la complexité
des calculs réalisés pour pouvoir supporter la vitesse du lien. Ils font également face
à de fortes contraintes en termes de disponibilité des données à un instant t, ce qui

v

peut être fortement limité par la mémoire ou les capacités de calcul du système. Ces
limitations liées au monde réel ont un impact important sur la fiabilité et le passage à
l’échelle des solutions de supervision utilisant du ML.

Dans cette thèse, nous approchons le problème du déploiement de solutions de
supervision de trafic réseau utilisant du ML dans des environnements réalistes en
concevant des méthodes d’extraction de métriques respectant les contraintes systèmes
et capables de passer à l’échelle. Nous nous intéressons particulièrement à rendre
l’extraction de métriques compatible avec les réseaux à haute vitesse en prenant en
compte la perte de paquets et les ressources de calcul limitées.

vi

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publications:

[1] Johann Hugon et al. “Towards Adaptive ML Traffic Processing Systems.” In: Pro-
ceedings of the on CoNEXT Student Workshop 2023. CoNEXT-SW ’23. Paris, France:
Association for Computing Machinery, 2023, pp. 11–12. isbn: 9798400704529.

[2] Johann Hugon et al. Cruise Control: Dynamic Model Selection for ML-Based Network
Traffic Analysis. 2024. arXiv: 2412.15146 [cs.NI].

[3] Johann Hugon et al. “The Cost of Packet Loss on ML-Based Traffic Analysis.” In:
2025 IEEE 31th International Symposium on Local and Metropolitan Area Networks
(LANMAN). 2025.

vii

https://arxiv.org/abs/2412.15146

My designs were so deceptively simple that it was easy for people to assume I just had easy
problems, whereas others, who made super-complicated designs (that were technically unsound

and never worked) and were able to talk about them in ways that nobody understood, were
considered geniuses.

Radia Perlman —

R E M E R C I E M E N T S

Cette thèse, au-delà d’être une centaine de pages de texte formaté, est le fruit et la
conclusion de trois années (et bien plus d’années d’études) qui m’ont fait grandir et
évoluer, et cela sûrement plus que je ne veux l’admettre.

Pour cela, je souhaite tout d’abord remercier Francesco Bronzino et Anthony Busson
pour m’avoir encadré et accompagné tout au long de ce périple. J’espère que vous avez
autant apprécié que moi ces années en ma compagnie. Dans la même veine, je souhaite
remercier Paul Schmitt et Nick Feamster pour leur temps et les discussions qui ont
contribué au bon déroulement de ma thèse et m’ont permis d’ouvrir ma vision de la
recherche. Je souhaite par ailleurs remercier tous les membres de mon jury, Cristel
Pelsser, Kevin Vermeulen et plus particulièrement les rapporteurs Chadi Bakarat et
Kandaraj Piamrat. J’en profite pour remercier Russ et Marcello pour leur suivi et leur
précieux retour lors de mes comités de suivis.

Bien que ces remerciements ne puissent pas être exhaustifs, je vais quand même
m’essayer à l’exercice. Je souhaite remercier toutes les personnes que j’ai pu rencontrer
au cours de ces années au sein de l’équipe HoWNet et avec qui j’ai eu la chance
de partager une discussion, un café et/ou un repas : Anthony, Augustin, Esther,
Francescomaria, Isabelle, Loic C, Loic D, Meriem, Samir, Théotime, Théophile, Thierry,
Thomas, Youssouph. Je souhaite également remercier toutes les personnes, en dehors
du cercle de notre équipe, avec qui j’ai eu le plaisir de discuter au sein du LIP ou
plus largement de la FIL, en particulier Joël, Antoine, les MALIP et les MILIP. Merci
également l’équipe de l’UChicago qui m’a accueillis pendant un semestre : Ajun,
Andrew, Anna, Chase, Cory, Jonatas, Kyle, Shinan, Synthia, Taveesh et Van. J’espère
que nos chemins se recroiseront à l’avenir !

J’ai une pensée particulière pour mes amis qui m’ont servi de soupape de décompres-
sion quand rien n’allait ou m’ont canalisé lorsque je m’emballais un peu trop. Merci à
David pour le soutien moral mutuel durant ces cinq dernières années et merci aussi
de m’avoir si souvent servi de bloc note. Mehdi et Paul d’avoir toujours été volontaire
pour m’écouter déblatérer tout et n’importe quoi. Clément pour avoir supporté mes
horaires de travail improbables. Merci à Anissa, Valentin et Maud pour m’avoir permis
de râler et de discuter du monde académique aussi bien autour d’un verre que lors
d’une randonnée. Nathan et Maëlle, pour votre bonne humeur, les vacances en votre

ix

compagnie sont toujours une incroyable aventure. Chloé-Lyne, Damien, Edward, Enora,
Harry, Joslin, Julien et Tanguy pour les innombrables moments partagés et les heures
passées à essayer de vous convaincre que le réseau c’est passionnant. Manon pour
m’avoir supporté pendant la rédaction de ce manuscrit et de m’avoir souvent accompa-
gné à l’aventure. Merci à tous mes amis d’enfance de m’avoir supporté, pour certains
courageux, depuis plus de 20 ans, et m’avoir permis de me déconnecter le temps d’un
week-end, d’un repas ou d’une soirée : Alexandre, Alizé, Aurélie, Guillaume, Chloé,
Erwan, Hugo, Jerem, Mathilde, Max, Nico, Simon, Thomas. J’ai également une pensée
émue pour ceux qui n’auront pas eu le temps de me voir finir ce long périple, Arno et
Arthur.

Je souhaite finalement remercier ma famille, qui n’a jamais rien compris a ce que je
faisais, mais qui m’a toujours soutenu. Particulièrement, mon père et mon frère, merci
à vous deux d’avoir cru en moi tout au long de toutes ces années d’études.

À tous ceux qui liront ces lignes, outré que je les ai oubliés, je m’en excuse d’avance
et vous remercie du fond du cœur.

x

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.1.1 Machine learning for Network Traffic Monitoring 1

1.1.2 Machine Learning End-to-End pipeline 2

1.1.3 Real-world constraints 3

1.2 Problem Statement 4

1.3 Thesis contributions 4

1.4 Organization 5

2 background and related work 7

2.1 Network Traffic Monitoring 7

2.1.1 Overview of Network Traffic Monitoring 7

2.1.2 Traditional Traffic Classification Techniques 8

2.1.3 Quality of Experience (QoE) Monitoring 9

2.2 ML-based Network Monitoring 11

2.2.1 ML-based Traffic Classification 11

2.2.2 ML-based QoE Inference 12

2.3 Monitoring with System Constraints 13

2.3.1 Model Pruning 13

2.3.2 Feature Engineering 13

2.3.3 Optimized Software 14

2.3.4 Dedicated Hardware 14

2.4 Limitation of Current Approaches 14

3 the cost of packet loss on ml-based traffic analysis 17

3.1 Introduction 17

3.2 Related Work 19

3.3 Methodology 20

3.3.1 Traffic analysis tasks 20

3.3.2 Dataset and Model Training 21

3.3.3 Loss Models 22

3.4 Analysis 24

3.4.1 Service Identification 25

3.4.2 Video Startup Delay Inference 26

3.5 Conclusion 29

4 cruise control : dynamic model selection for ml-based net-
work traffic analysis 31

4.1 Introduction 31

4.2 Background and Motivation 33

xi

xii contents

4.2.1 ML-Based Traffic Analysis 33

4.2.2 Downsides of Static Model Selection 35

4.2.3 The Accuracy Costs of Packet Loss 36

4.3 Cruise Control 37

4.3.1 System Configuration 37

4.3.2 Dynamic Feature Computation 39

4.3.3 Adaptive Model Selection 41

4.4 Prototype Implementation 44

4.4.1 Software prototype 44

4.4.2 Use Cases 45

4.5 Evaluation 46

4.5.1 Performance Under Varying Workloads 47

4.5.2 System Overhead 50

4.5.3 Multi-core Scalability 51

4.5.4 Multitask Support 52

4.5.5 Sensitivity to Parameters 54

4.6 Related work 54

4.7 Conclusion 55

5 lo-fi : low-cost early application filter based on cached ml

decisions 57

5.1 Introduction 57

5.2 Related Work 58

5.3 Lo-Fi 61

5.3.1 Low-cost early application filter 61

5.3.2 System Workflow 63

5.3.3 Capitalize on past decisions 64

5.4 Evaluation 65

5.4.1 Prototype Implementation 66

5.4.2 Overall performances 66

5.4.3 ML performances 67

5.4.4 Short-Circuit performance 69

5.5 Conclusion 70

6 conclusions 71

6.1 Contributions 71

6.2 Perspectives 71

6.2.1 Hardware optimization 71

6.2.2 Network traffic prediction 72

6.2.3 ML-related metrics 72

6.2.4 Closing the loop 73

bibliography 75

L I S T O F F I G U R E S

Figure 1.1 Machine Learning End-to-End (E2E) pipeline 2

Figure 3.1 State Transition Diagram of the Burst Models 23

Figure 3.2 Impact of loss on the ideo Startup Delay Inference use case 27

Figure 3.3 Average time to download a video segment 28

Figure 4.1 Comparison of the impact of three different video quality infer-
ence models across different times of day. 34

Figure 4.2 Cruise Control system overview. 37

Figure 4.3 Video quality inference Pareto front. 39

Figure 4.4 Timeseries of Cruise Control model selection algorithm. The
blue line represents the selected feature set, while the red line
shows the number of dropped packets over time. 43

Figure 4.5 Service recognition Pareto front. 45

Figure 4.6 Different time of day workload 48

Figure 4.7 Timeseries for static feature sets and Cruise Control for video
quality inference 49

Figure 4.8 Service recognition features extraction across three different
network load 53

Figure 5.1 Diagram of Lo-Fi 64

Figure 5.2 Number of processed and dropped packets (in Mpps) over 10

minutes of CAIDA traffic using 2 Central Processing Unit (CPU)
cores 66

Figure 5.3 Comparison of cost estimates (1st and 99th percentiles): ML
Subscriptions vs. Short-Circuit method (TLS SNI) as the base-
line 68

L I S T O F TA B L E S

Table 3.1 Features Sets 20

Table 3.2 Traces after application of probabilistic loss 24

Table 3.3 Traces after application of burst loss 24

Table 3.4 Impact of probabilistic losses on Service Identification use case 26

Table 3.5 Impact of burst losses on Service Identification use case 26

xiii

Table 4.1 Impact of bursty losses on video startup time inference as Me-
dian Absolute Error (MAE) in ms. 36

Table 4.2 Video quality inference models. 38

Table 4.3 Service recognition models. 45

Table 4.4 Performance comparison between static model and Cruise

Control for video quality inference and service recognition 50

Table 4.5 Median packet loss (%) evaluation on multi-core during 10 min-
utes experiment. *Memory exhausted 52

Table 4.6 Median Accuracy and Total Drop(%) of different combinations
of control algorithms 53

Table 4.7 Impact of mon_window on Cruise Control 54

Table 5.1 Comparison of existing filtering and their limitations 60

Table 5.2 The percentage (rounded) of the targeted flow comparison of the
extracted flow and a breakdown of the extraneous flow split into
two categories: misclassified (MC) and unknown (UK). 70

A C R O N Y M S

AIAD Additive Increase/Additive Decrease

AIMD Additive Increase/Multiplicative Decrease

API Application Programming Interface

CDN Content Delivery Network

CNN Convolutional Neural Networks

CPU Central Processing Unit

DDIO Data Direct I/O Technology

DL Deep Learning

DMA Direct Memory Access

DNS Domain Name System

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

E2E End-to-End

ECH Encryption Client Hello

FPGA Field-Programmable Gate Array

xiv

acronyms xv

GPU Graphical Processing Unit

GRO Generic Receive Offload

GSO Generic Segmentation Offload

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IPFIX IP Flow Information eXport

IPS Intrusion Prevention System

IQR InterQuartile Range

ISP Internet Service Provider

ISP Internet Service Provider

LRU Least Recently Used

LSTM Long Short-Term Memory

ML Machine Learning

MOS Mean Opinion Score

MPPS Million Packets per Second

NIC Network Interface Card

NN Nearest Neighbors

ONNX Open Neural Network Exchange

PCAPNG PCAP Next Generation

PCAP Packet Capture

QoE Quality of Experience

QoS Quality of Service

regex Regular Expression

RSS Receive Side Scaling

SNI Server Name Indication

SVM Support Vector Machine

TLS Transport Layer Security

TSO TCP Segmentation Offload

TTD Time To Decision

VoIP Voice over IP

1
I N T R O D U C T I O N

1.1 Motivation

1.1.1 Machine learning for Network Traffic Monitoring

Networks are becoming increasingly complex nowadays. Traffic is faster, more en-
crypted, and more encapsulated. At the same time, operators and researchers are
seeking to answer more sophisticated questions and monitor increasingly specific be-
haviors in order to achieve fine-grained observability and, ultimately, ensure the best
possible QoE for end-users.

As network link speeds continue to rise, especially for Internet Service Provider (ISP),
the number of packets processed per second increases accordingly, creating additional
pressure on traffic analysis systems. This surge in data throughput demands more
efficient and scalable solutions to handle the growing volume of network traffic. At
the same time, the widespread adoption of encryption has significantly improved user
privacy but introduced new challenges for network operators. Since most traffic is now
encrypted, traditional techniques, such as Deep Packet Inspection (DPI) or rule-based
systems, are becoming less effective [96]. Although some works relying on Domain
Name System (DNS) or Transport Layer Security (TLS) Server Name Indication (SNI)
can still be used for traffic classification, they are now considered to be obsolete, as
countermeasures have already been standardized [32, 56, 59, 62, 63].

In this context, ML has emerged as a promising solution. It enables fast and complex
inference over large volumes of data that are extracted or derived from network traffic.
This derived data, known as features, is critical to the performance of any ML model, as
it forms the input upon which inference relies. Importantly, ML is particularly suited
for working with encrypted traffic, thanks to the use of statistical features such as time
series, inter-packet timing, packet counts, and packet direction. These metadata-driven
indicators carry meaningful patterns even when the payload is not accessible. Moreover,
ML is naturally well-suited to networking environments, where data is abundant,
highly structured, and often presented as time-series logs or metrics. Its ability to reveal
hidden patterns makes it a powerful tool for a wide range of use cases. As a result, there
is extensive literature on the application of ML in networking, addressing problems
such as QoE inference, traffic classification, intrusion detection, and malware detection.
However, despite the diversity and promise of these works, most of them require
additional steps before they can be realistically deployed in operational environments.

1

2 introduction

NetFlow
IPFIX
PCAP
PCAPNG

Collect Raw Data

Size and Direction
Timestamp
Flag counters
Window size

Extract Features

Bandwidth
Inter Arrival Time
Bytes in Flight
Application-Related

Compute Complex
Features

Decision Tree
Random Forest
CNN
LGBM

Serve Model

Figure 1.1: Machine Learning E2E pipeline

1.1.2 Machine Learning End-to-End pipeline

In the context of networking, ML involves much more than just models and features.
As illustrated in Figure 1.1, it begins with the extraction of information from network
data. This extraction can be performed using a wide variety of formats and tools, each
with distinct characteristics and trade-offs. We can distinguish two major data sources:

• Flow-based data, such as NetFlow [24], or IP Flow Information eXport (IPFIX) [128]
provides a high-level summary of traffic at relatively low computational and mem-
ory cost. These formats are particularly suited for coarse-grained monitoring and
long-term trend analysis. However, they lack fine-grained details and significantly
constrain the types of features that can be computed. As a result, it is often
difficult, if not impossible, to retrospectively analyze specific behaviors once the
data has been aggregated.

• Raw packet capture, typically in Packet Capture (PCAP) or PCAP Next Gener-
ation (PCAPNG) format, offers a near-complete snapshot of the network state,
preserving full packet-level information. This makes it ideal for feature extraction
and detailed behavioral analysis. However, raw captures come with substantial
storage and processing costs, especially in high-speed network environments. For
instance, a one-hour CAIDA trace1 at an average rate of 1 Million Packets per1Trace: CAIDA

Equinix Chicago,
2016-01-21,

Bidirectional

Second (MPPS) can reach nearly 300GB.

After data collection, feature extraction converts raw network data into meaningful
inputs for ML models. The complexity of this step depends on the data source and the
chosen features. Simple features, readable from packet headers, are fast to compute
but limited in detail, while richer features, such as time-based or statistical features,
require more processing power and additional computation. These features necessitate
a second step in which information is aggregated to provide more context. In practice,
PCAP-based datasets remain the most convenient approach for academic ML research
on network traffic, due to their richness and flexibility for feature design. This flexibility
is especially convenient during the development of new ML models, where exploratory
analysis and feature experimentation are crucial. However, the reliance on PCAP
introduces scalability and deployment challenges that are often ignored in academic
literature.

1.1 motivation 3

1.1.3 Real-world constraints

While PCAP offers a highly convenient format for model development and feature
exploration, it typically captures only a partial view of network activity, often missing
the full spectrum of behaviors observed in operational environments. This is precisely
where a significant problem lies. Models trained and evaluated using snapshots may
perform well on them, yet struggle to generalize in real-world, continuous traffic. Live
network traffic is bursty, noisy, and lossy. It exhibits timing variations, anomalies, and
protocol irregularities that are often underrepresented and difficult to capture in offline
data.

This gap becomes particularly problematic at deployment time. Many existing models
assume access to complete traffic flows or extended time windows, which enables
accurate offline evaluation and model development. However, such assumptions are
rarely met in operational environments due to resource constraints, packet loss, and
system delays. While these models are often designed to support network monitoring,
they tend to overlook the critical real-time requirements of operational settings. In
practice, network operators of ISP need monitoring tools that can process data and
make decisions at line rate to preserve end-user QoE. This creates a fundamental
challenge: the full ML pipeline shown in Figure 1.1 must operate at line rate under
realistic system constraints. This involves collecting, processing, and inferring from
network data in real time while respecting tight limits on processing resources, memory,
and latency.

Although system-level concerns are often considered secondary engineering details,
they are nonetheless crucial for the practical deployment of ML in high-speed networks.
Failing to consider system-level constraints can result in models that, while accurate on
paper, will not work in practice. Therefore, any practical ML-based monitoring solution
must be designed with a deep awareness of both network and system constraints. This
requires operators and researchers to reconsider prevailing assumptions about input
fidelity, pipeline architecture, and system issues that are not widely explored in existing
research.

4 introduction

1.2 Problem Statement

Although ML-based methods have shown strong performance in controlled academic
environments, they often fail when deployed in real-world [27]. In networking, this
gap is largely due to the common practice of evaluating models in isolation from the
data collection and feature extraction pipeline [15]. Such pipelines are often idealized,
overlooking practical challenges such as packet loss, resource limitations, and high-
throughput demands.

In operational network monitoring, tools must provide real-time insights while
operating under stringent system constraints, including limited computational resources
and memory. Static approaches are particularly problematic in this context, as they are
unable to adapt to dynamic network conditions, leading to performance degradation
or missed information.

This thesis focuses on two fundamental questions:

• How can adaptive feature extraction strategies mitigate packet loss in dynamic
network environments compared to static configurations?

• How can ML-based classification systems be effectively deployed “off the shelf”
for packet filtering at line-rate?

1.3 Thesis contributions

This thesis makes three main contributions, each addressing a different aspect of
the challenges involved in deploying ML-based network monitoring tools in modern
network environments.

First, we conducted an empirical study on the impact of packet loss on ML perfor-
mance. We analyze the effects of bursty and sporadic packet losses on features at the
packet level and on aggregated metrics. Then, we apply our findings to two classic
ML tasks. This study provides insight into how packet loss affect model accuracy. This
insight forms the foundation of the following contributions.

Second, we develop a feature extraction pipeline, called Cruise Control, that dy-
namically adapts the features collected based on the instantaneous state of the network
and system. By monitoring low-cost local system metrics, the pipeline adjusts feature
complexity to reduce resource consumption while reducing packet losses.

While the previous contributions focused on already filtered traffic, this final contri-
bution aims to enable feature extraction systems, such as Cruise Control, to process
more complex features by reducing the traffic load, using ML-based classification as
a preliminary filter. This strategy reduces the overall data volume, but in doing so,
we uncovered a bottleneck: directly applying off-the-shelf ML models in operational
networks is resource-intensive. To address this challenge, we propose a novel hybrid
approach that leverages simple, interpretable network-level rules derived from cached

1.4 organization 5

ML decisions. This approach achieves a favorable balance between scalability and
accuracy, enabling real-time deployment in resource-constrained environments.

Together, these contributions further the practical deployment of ML in network
monitoring by bridging the gap between ideal academic models and the limitations of
real-world systems.

1.4 Organization

This thesis is organized as follows:

• Chapter 2 provides a general overview of the state of the art in applying machine
learning to networking, highlighting several key works that form the foundation
for subsequent chapters.

• Chapter 3 investigates the impact of packet loss during feature collection and
extraction. This study simulates both bursty and sporadic loss patterns while
evaluating two types of features.

• Chapter 4 introduces a new system, called Cruise Control, that considers a pool
of models rather than relying on a single one. The system dynamically selects the
most appropriate model based on the current network and system conditions.

• Chapter 5 presents a concrete use case involving a machine learning task, specifi-
cally traffic classification, and explores its deployment in a practical setting, such
as a traffic filter. The focus is on identifying the trade-offs required for deployment
and proposing alternatives to overcome associated challenges.

• Chapter 6 concludes the thesis by summarizing key insights and outlining poten-
tial directions for future research.

Although each chapter is self-contained and can be read independently, they are
designed to build upon one another. Therefore, a sequential reading is recommended,
as questions raised in one chapter are often explored in the next.

2
B A C K G R O U N D A N D R E L AT E D W O R K

In this section, we provide an overview of the current state of the art in Network Traffic
Analysis techniques, ML-based network analysis solutions, and ML-based approaches
designed with system constraints in mind. This overview is intended to give readers the
necessary context to better understand the subsequent chapters. This chapter introduces
broad concepts and key ideas. More exhaustive related work, specific to individual
chapters, will be presented later in their relevant contexts.

2.1 Network Traffic Monitoring

2.1.1 Overview of Network Traffic Monitoring

Networking fundamentally relies on packets that carry information from a source to
one or more destinations. This is the responsibility of the network operator. They are
responsible for making their isolated networks interoperable with others, thus enabling
their customers to communicate with each other and with the rest of the Internet.
Network operators are also bound by performance and security guarantees. Traffic
monitoring is the key to ensuring these requirements. This goes beyond maintaining
connectivity; it allows debugging, and troubleshooting traffic in real time to preserve
availability, resilience, and QoE.

Monitoring consists of extracting information from the network using techniques
such as port-based analysis or DPI, and inferring behavior, such as congestion, attacks,
or malfunctions. Ultimately, it involves taking action, if needed, to ensure the network
is functioning properly. The type of information monitored depends on the level of
granularity: At the packet level, metrics capture properties such as size, timestamp,
protocols and header fields. This offers insight into network events and supports traffic
identification methods such as port-based analysis or DPI. At the flow 1 level, packet
metrics are aggregated across multiple packets, enabling observation of higher-level
behaviors, such as traffic volume patterns, inter-arrival times, and protocol dynamics.
Together, packet and flow-level monitoring provide a comprehensive view of network
behavior. Although there are many ways to monitor a network, this chapter presents

1 Several overlapping terms are used to describe a series of packet exchanges between a source and a
destination. These terms include flow, connection, session, 5-tuple, and biflow, among others. Although each
term emphasizes different aspects, they generally refer to the same concept. In the following, we will use
the term flow.

7

8 background and related work

the two main use cases that will be used in the following chapters: traffic classification
and QoE monitoring.

2.1.2 Traditional Traffic Classification Techniques

Traffic classification is the process of categorizing network packets into different classes,
which can represent various levels of granularity such as protocols (TCP, UDP, ICMP),
type of services (online gaming, audio, video streaming), or applications (Netflix,
Facebook, Spotify). Traffic classification has always been considered a critical task by
operators and researchers. It consists of identifying the service or application associated
with a flow, which enables a variety of network management tasks. For example, in
a saturated environment, Voice over IP (VoIP) packets requiring low latency can be
prioritized to ensure QoE, while emails, which do not require latency guarantees,
can be given lower priority. Beyond prioritization, traffic classification also supports
intrusion and anomaly detection, enforcement of security and access-control policies,
traffic engineering, load balancing and the monitoring of service-specific performance.
At the same time, traffic classification can also be employed for more controversial
purposes, such as censoring or limiting access to particular applications. This often
leads to a cat-and-mouse dynamic between operators, who aim to ensure performances
and QoE, and the security community, which seeks to protect privacy. This dynamic
will be explored in more detail in the following sections, where we discuss measures
and countermeasures.

port-based In 1992, RFC 1340 [105] attempted to establish a port space in which
each application would have its own protocol and, thus, its own port. However, due to
the increasing number of applications, this approach has become difficult to maintain.
Furthermore, some applications obfuscate their ports by using other applications’
ports or unreserved ports [28] to avoid being blocked or limited. Additionally, many
applications are tunneled within HTTP [93], causing connections to use ports 80, 8080,
or 443. Despite these limitations, port-based classification remains the fastest and
simplest method. It is particularly useful for legacy applications or protocols and in
scenarios where accuracy is less critical [75], as it requires reading only a single field.

payload-based As port-based approaches became less reliable, payload-based
methods, also called DPI, gained popularity [46, 84]. These methods perform pattern
matching with signatures or Regular Expression (regex) directly on packet payloads.
While highly accurate, they require significant computational resources, scale poorly,
and raise ethical and legal privacy concerns [75]. Moreover, they are easily circumvented
when payloads are encrypted [140].

2.1 network traffic monitoring 9

ip-based The IP address is another valuable piece of information, as it is typically
associated with a service. Identifying the IP can help determine the service. This tech-
nique, similar to port-based methods, relies on simple rules and is thus faster than DPI,
which requires more complex comparisons. However, it suffers from scalability issues
because it requires knowing all IP-service mappings in advance [119], or implementing
methods to dynamically populate the IP table. Shared IP addresses and the widespread
use of Content Delivery Network (CDN)s further complicate this approach. Nonethe-
less, combining IP addresses, ports, and protocols into the well-known 5-tuple remains
the standard for flow identification.

dns-based To overcome the limitations of static IP filtering, researchers developed
techniques leveraging information orthogonal to the flow, such as DNS exchanges,
which remain in clear text before HTTPS connections. By analyzing client DNS requests
and responses, one can populate a dynamic IP table [34, 119]. However, this method is
being rendered obsolete by the deployment of DNS over Encryption [83]. The Internet
Engineering Task Force (IETF) has proposed various implementations, including DNS
over TLS, HTTPS, and QUIC [56, 59, 63].

tls-based For TLS connections, operators can use the TLS SNI field to identify end
services, which is particularly useful for CDNs sharing IP addresses. Since the SNI
is in clear text, operators can easily determine the service [119], although they must
wait for the TLS Client Hello to complete. Countermeasures such as Encryption Client
Hello (ECH) are being standardized to encrypt the entire Client Hello and optionally
route traffic through a public proxy to anonymize end services. While deployed in web
browsers such as Firefox (since version 85) [40], server-side adoption remains limited.

2.1.3 QoE Monitoring

QoE is a user-centric metric that captures the perceived quality of a service, such as web
browsing, video streaming, or real-time communication. Beyond identifying services
and applications, network operators are increasingly concerned with quantifying the
actual QoE experienced by their subscribers [70, 124]. While traditional traffic classi-
fication provides visibility into the types of flows traversing the network, it does not
directly reveal how well these services are performing or whether users are satisfied.
QoE monitoring aims to bridge this gap by capturing user experience from measurable
indicators.

Prior to the emergence of QoE, monitoring efforts primarily focused on Quality of
Service (QoS) metrics [114]. Formally, RFC 2386 [26] defines QoS as “a set of service
requirements to be met by the network while transporting a flow.” In practice, operators
track metrics such as throughput, latency, and jitter, which reflect the network’s opera-
tional performance but remain agnostic to user perception. As a result, they offer only

10 background and related work

a partial view: while operators may measure uptime ratios, users care above all about
seamless access to the service whenever needed [132]. This discrepancy highlights the
need to complement QoS with user-centric measures, which QoE provides.

network-level metrics Network-level QoE indicators are derived from tra-
ditional QoS measurements and aim to establish their relevance to user experience.
Such indicators typically involve aggregating transport-level metrics (e.g., throughput,
latency, packet loss) and identifying those most strongly correlated with perceived qual-
ity. Since they rely on observable network characteristics, they remain comparatively
robust to traffic encryption. Nevertheless, when examined in isolation, network-level
indicators often lack the granularity required to capture application-specific aspects of
user satisfaction.

application-level metrics A substantial body of research on QoE monitoring
has concentrated on video streaming, which is projected to account for more than
half of global internet traffic by 2025 [110]. To ensure performance, major content
providers such as Netflix deploy CDNs within or near operator networks, thereby
reducing latency and improving responsiveness [11]. This architectural proximity also
supports troubleshooting efforts: if multiple users simultaneously experience buffering
while accessing Netflix, the underlying cause is more likely to reside within the
operator’s infrastructure than in the remote service itself. Consequently, video-specific
QoE metrics, such as resolution, startup delay, or buffering frequency, have become
particularly valuable for operational monitoring and troubleshooting. Nonetheless,
obtaining such metrics frequently relies on DPI techniques [87, 129].

user-level metrics At the highest level, QoE can be measured directly from users,
offering the most accurate assessment of perceived service quality. This is typically
achieved through surveys and standardized instruments such as the Mean Opinion
Score (MOS), which quantify user perception in a reproducible manner. For instance,
ITU-T P.1203 specifies a standardized methodology for computing MOS values in video
streaming scenarios [141]. Although these methods yield reliable ground truth, they
are often costly, time-consuming, and challenging to scale, as they require extensive
user participation across diverse content types and services [100].

Many traditional methods for QoE monitoring rely on application-level metrics,
which are typically extracted using DPI. However, the increasing prevalence of en-
crypted traffic severely restricts the accessibility of payload-based indicators, thereby
reducing the effectiveness of these methods. This limitation underscores the need
for novel approaches capable of inferring QoE without direct reliance on payload
inspection or large-scale user studies.

2.2 ml-based network monitoring 11

2.2 ML-based Network Monitoring

Encryption is now ubiquitous, according to Google’s Transparency Report [50]. While
vital for user privacy, it reduces the effectiveness of many traditional traffic analysis
methods, a challenge noted as early as the 2000s [73]. Furthermore, recent networks
carry tremendous traffic volumes at ever-increasing speeds, creating scalability chal-
lenges. Techniques like DPI struggle to keep up, and high-speed traffic introduces
system-level constraints, such as limitations in the Linux kernel’s networking stack [18].

This shift has motivated the exploration of alternative, scalable approaches that can
operate without access to payload data. Among these, ML has emerged as a particularly
promising and widely adopted solution. Unlike DPI, ML models can exploit features
that remain observable in encrypted traffic, such as header information, statistical flow
descriptors, and packet timing patterns, allowing them to operate even when payloads
are inaccessible.

The application of ML to networking is not new. Early work such as BLINC [73] in
2005 demonstrated the feasibility of traffic analysis using behavioral patterns rather
than packet content, pioneering behavior-based traffic analysis on encrypted flows
and influencing later ML-based methods for traffic classification. One survey from
the late 2000s [99] already documented a variety of statistical and machine learning
techniques for classification. Since then, the field has evolved substantially: initial
approaches generally combined classical algorithms (e.g., decision trees, Support Vector
Machine (SVM)s, k-Nearest Neighbors (NN)) with hand-crafted statistical features [12,
72], whereas more recent methods increasingly leverage deep learning architectures
capable of learning directly from raw packet sequences, time-series representations, or
graph-based flow structures [1]. This evolution has broadened the applicability of ML
to a wide range of networking tasks, from traffic analysis and intrusion detection to
anomaly detection, malware detection, and service quality monitoring.

Given the vast diversity of ML applications in networking, this section focuses on
two tasks presented in the last section, Traffic Classification and QoE inference.

2.2.1 ML-based Traffic Classification

ML offers an alternative to traditional classification methods by leveraging flow-level
and header-based features that remain accessible despite encryption. These features
typically include packet sizes, inter-arrival times, directionality, burst patterns, and
statistical aggregates. By modeling these characteristics, ML-based approaches can
distinguish between services and applications without examining packet payloads
[122].

ML-based traffic classification spans from coarse-grained service identification (e.g.,
web browsing, streaming, video games, or file transfer) to fine-grained recognition of
specific applications (e.g., Netflix, YouTube, or Spotify). Research has also explored

12 background and related work

early classification, which seeks to identify the service after observing only a limited
number of packets [10, 51], a critical capability for real-time network management
where early decisions can prevent congestion or QoE degradation. Approaches differ
in their choice of features and models. While some adopt simple flow statistics and
classical ML algorithms to prioritize computational efficiency[14, 122], others leverage
deep neural networks to capture complex patterns in raw packet [106, 136], and more
recently representations learning[146].

However, the reliability of these methods is inherently tied to the quality, complete-
ness, and consistency of the collected data. Performance can deteriorate under dynamic
network conditions or partial flow observations, highlighting a critical dependency
on the underlying measurement infrastructure and exposing a key area for further
research in system-aware ML-based traffic analysis.

2.2.2 ML-based QoE Inference

While traffic classification identifies what the traffic is, QoE inference seeks to estimate
how well that traffic is performing for the end user. As encryption increasingly hides
application-layer details, directly measuring QoE becomes challenging [76]. In this
context, ML-based inference offers a way to estimate video quality metrics, startup delay,
call quality, or other user experience indicators using only network-side observations.

Research in this area has focused primarily on video streaming services, due to
their dominant share of modern Internet traffic and their sensitivity to performance
fluctuations. ML models can be trained to infer application-level QoE proxies from
flow-level features, such as burst size sequences, idle periods, or retransmissions [14,
55]. This approach enables operators to monitor service quality in real time without
accessing or decrypting payload data, offering a practical solution for encrypted traffic
while highlighting the critical role of robust and accurate feature extraction in ensuring
reliable QoE estimation. Various modeling approaches have been explored over time,
ranging from classical ML algorithms [33, 90] to deep learning models [121], and more
recently, representation learning techniques [137].

Nevertheless, the effectiveness of ML-based QoE inference heavily depends on the
quality and completeness of extracted features. Limitations in the feature extraction
process, such as incomplete flows or coarse-grained measurements, can degrade predic-
tion accuracy. The field has made incredible progress over the past two decades and
remains extremely active. However, real-world deployment still faces constraints in
feature extraction, robustness under diverse conditions, and scalability to high-speed
networks. Addressing these limitations is central to the contributions of this thesis.

2.3 monitoring with system constraints 13

2.3 Monitoring with System Constraints

As presented in the previous section, ML is highly effective for addressing modern
networking challenges. However, as noted in Chapter 1, system-level constraints, such
as processing capabilities, memory limits, and thus packet loss, are frequently under-
examined in the literature. Many models, developed and validated on idealized datasets,
fail when deployed in real-world environments [7, 27]. Research often focuses on the
model itself rather than the full pipeline for extracting features from network traffic.
However, if the pipeline fails, the performance of the entire ML model can be severely
compromised. In this section, we discuss several bottlenecks and corresponding strate-
gies from the literature. We start with modifications to ML models themselves, then
review feature extraction optimizations, system-level packet processing improvements,
and finally dedicated hardware solutions.

2.3.1 Model Pruning

Model pruning involves simplifying models to reduce their computational cost, improve
execution speed, and lower memory usage. This approach focuses on optimizing
the model itself rather than the data pipeline. Advantages include making models
deployable in resource-constrained environments [133], reducing execution latency, and
decreasing overall model size [23]. However, pruning can lead to overfitting, accuracy
degradation, and requires extensive engineering effort for fine-tuning. Furthermore,
recent studies suggest that model execution often represents only a fraction of the
pipeline’s total processing time [81], making pruning a suboptimal focus in some cases.

2.3.2 Feature Engineering

Feature computation is a critical step in ML pipelines, and inefficient design can lead
to packet loss. Feature engineering aims to reduce the number of features or packets
processed to essential metrics only. For high-speed environments, several works target
optimization. For instance, Retina [134] selectively processes only a subset of packets
through optimized filtering, achieving high throughput at the expense of full-traffic
visibility. However, this approach is less flexible in dynamic networks, requiring system
downtime and recompilation for configuration changes.

Other approaches aim to standardize feature representation for broader applicability.
NPrint [58] extracts features from packet headers at the bit level, while FlowPic [116]
represents flows in a structured manner. These methods reduce dependence on protocol-
specific details but can introduce significant computational and memory overhead,
particularly when processing irrelevant or small packets. Overall, feature engineering
often results in restricted features or limited packet coverage, primarily due to the
dynamic nature of network traffic.

14 background and related work

2.3.3 Optimized Software

High-speed networking introduces additional bottlenecks, even within the Linux ker-
nel’s networking stack. Software optimizations have been developed to mitigate these
issues. A widely adopted solution is Data Plane Development Kit (DPDK)[29], which
allows applications to bypass the kernel stack and interact directly with the Network
Interface Card (NIC). By using techniques like continuous polling, DPDK achieves high
throughput and low latency, but developers must implement packet-processing logic
themselves.

Other optimizations work within the kernel and NIC, leveraging features such as
segmentation offload [97], TCP Segmentation Offload (TSO), and Generic Receive
Offload (GRO)/Generic Segmentation Offload (GSO), which reduce per-packet pro-
cessing overhead. Recent work explores redesigning NIC–kernel interactions [111] or
optimizing queueing mechanisms [69] to further improve efficiency.

2.3.4 Dedicated Hardware

Dedicated hardware has long been used in networking, but programmable devices
such as P4 switches[139], FPGAs [39], and SmartNICs [133] now allow custom ML
pipelines to run at line rate. Hardware acceleration can offload parts of the processing
pipeline, providing substantial computational gains. However, these approaches require
specialized engineering skills. Moreover, the number of native operations is often
limited by hardware design, imposing constraints similar to those seen in model
pruning.

2.4 Limitation of Current Approaches

While existing technologies provide a wide range of tools for monitoring and analyzing
network traffic, they overlook a crucial point. Network traffic is inherently dynamic, its
patterns, volumes, and behaviors fluctuate over time. These fluctuations can occur at
multiple timescales: abrupt spikes may result from sudden events, or bursts of specific
applications, while gradual variations reflect daily cycles, weekly patterns. Applying
a static solution, no matter how optimized, is fundamentally incompatible with this
dynamic nature and inevitably leads to packet loss or reduced analysis accuracy. This
observation leads to the core argument of this thesis: solutions must be dynamic and
adaptive, following changes in network context rather than being limited by static
approaches.

To overcome these limitations, we, firstly, study the actual impact of packet loss
on ML-based network analysis (this issue is examined in Chapter 3). Secondly, based
on the observation that relying on a single static configuration in dynamic network
environments is suboptimal. We addressed this limitation by introducing adaptive

2.4 limitation of current approaches 15

feature extraction strategies that adjust to changing conditions (in Chapter 4). Allowing
the system to be able to follow changes in network context during days and also
quickly react in case of bursts. Finally, we investigate a real-world deployment of an
ML-based classification system used as a packet filter. We analyze the shortcomings
of deploying such systems “off the shelf” and propose strategies to overcome these
limitations (presented in chapter 5).

3
T H E C O S T O F PA C K E T L O S S O N M L - B A S E D T R A F F I C A N A LY S I S

Johann Hugon et al. “The Cost of Packet Loss on ML-Based Traffic Analysis.” In: 2025 IEEE 31th International Symposium on

Local and Metropolitan Area Networks (LANMAN). 2025[61]

In this chapter, we investigate the impact of packet loss on the performance of
ML-based traffic analysis systems. As losses introduce bias in the final features set
provided to the machine learning model, we hypothesize that they will negatively
impact model performance. We evaluate this hypothesis by analyzing the performance
of two different ML tasks presented above, service classification and QoE analysis
(video startup delay). Both are trained on a dataset of video flows, and we measure the
impact of two different packet loss models: probabilistic and bursty losses. Our results
show that sporadic packet loss has little impact on performance. Conversely, bursty
losses, which are more common for packet processing systems, can lead to a significant
negative impact.

3.1 Introduction

Deploying ML systems for traffic analysis on live, high-speed links requires a prepro-
cessing pipeline that is able to operate within strict system constraints [81, 126, 135].
Preprocessing pipelines typically consist of several critical stages: packet extraction
from the link, protocol parsing, filtering, and feature computation. Yet, the systems
responsible for these actions face fundamental operational constraints that can lead to
packet loss, which has the potential of compromising the quality, or even correctness,
of features provided to downstream ML models.

Various approaches to network traffic analysis face different constraints. Traditional
tools like Tcpdump [127] allow capturing network traffic, but often struggle with high-
speed links due to kernel network stack bottlenecks [18]. While storing traces for offline
usage might reduce processing and memory constraints, the cost of uploading large
data volumes to a remote location becomes critical during high traffic times. More
modern techniques [22], such as zero-copy packet processing through technologies
like DPDK [29] or XDP [57], can prevent memory and storage exhaustion by reading
packets directly from NIC memory or cache, but require the entire pipeline to process
packets at line-rate—when processing capacity cannot match network throughput,
packets are inevitably dropped, resulting in information loss that propagates to ML
model features. In-network solutions like in-switch ML [78, 102] offer an alternative
approach but provide very limited resources due to the need to perform routing in
parallel with analysis tasks.

17

18 the cost of packet loss on ml-based traffic analysis

Of course, the dynamic nature of network traffic makes it nearly impossible to
design measurement systems that operate without packet loss under all conditions,
if not at the cost of reduced model accuracy. Even pipelines that perform well in
controlled environments often fail when confronted with real-world traffic pattern[7,
27]. This raises a fundamental, yet under-explored question: How does packet loss affect
the performance of ML-based traffic analysis systems? Recent work [8] has shown that
packet loss can have significant effects on the performance of ML models. However,
while this work proposes solutions to mitigate such degradation, it fails to provide a
comprehensive understanding of the underlying impact that packet loss has on the
performance of ML models. In this chapter, we aim to fill this gap by answering two
key questions:

Q1. Does packet loss affect model performance independently of its distribution? Recent
work by Babaria et al. [8] has demonstrated that packet loss can heavily impact
accuracy for service identification models. However, they solely used a simplistic
probabilistic model for loss, where every packet is considered independently. In
contrast, in operational environments, packet loss typically occurs in bursts during
periods of system stress [15]. Rather than isolated drops, these bursts—ranging
from a few packets to thousands—disrupt the temporal continuity of features. We
hypothesize that this pattern of loss more accurately reflects real-world conditions
and has a disproportionately negative impact on model performance compared to
random individual packet drops.

Q2. In the presence of loss, does accuracy degradation depend on ML model input features? In
their paper, Babaria et al. [8] discuss how lost packets lead to missing or distorted
features that may compromise model accuracy for various service identification
solutions. Without complex (i.e., computationally expensive) stateful connection
tracking, these inconsistencies become difficult to identify. For example, in DPDK-
based systems, incoming packets can overwrite older, still unread packets in the
buffer before processing completes, creating undetected gaps in the data. In such
cases, the model may receive features that are inconsistent with the true state of
the network. However, while these distortions can be evident in the case of service
identification, where only a handful of packets are used to build features, they
might be less evident for scenarios like video startup time inference where features
are mostly aggregates collected across many (i.e., hundreds if not thousands) of
packets.

To answer these questions, we focus our work on two distinct ML-based traffic
analysis tasks: (1) service identification, a classification problem; and (2) video startup
delay inference, a regression problem. For these use cases, we study how packet loss
affects performance metrics for these by applying both a probabilistic model that
randomly drops individual packets, as well as a two-state Markov chain model that
simulates realistic bursts of packet drops. We find that the impact of sporadic drops

3.2 related work 19

is noticeable, but negligible below low thresholds. However, bursty drops can have a
large impact on model performance, even with a low probability of occurrence.

The remainder of this chapter is organized as follows: Section 5.2 discusses relevant
prior work; Section 3.3 details our experimental methodology; Section 3.4 presents
results across both use cases; finally, Section 5.5 summarizes our findings and their
implications. All analysis code and results are made available as a Jupyter notebook1 to
ensure reproducibility.

3.2 Related Work

The quality of datasets is widely recognized as a crucial factor affecting the overall
performance of ML models [2, 49]. While prior research (such as Mauri et al. [89])
has investigated the impact of data poisoning, where adversaries deliberately modify
training data, our work specifically addresses data quality issues at inference time
rather than during model training.

Foroni et al. [47] generated variations of the same dataset with different noise
levels to measure the impact on task performance. Our approach is similar in that we
introduce controlled noise—specifically packet loss—at predetermined rates to evaluate
performance degradation. However, our work is distinguished by its application to
network systems and consideration of domain-specific constraints such as bursty packet
losses.

More recently, Cavitt et al. [21] investigated the negative effects of packet drops in
power systems. They employed machine learning models to detect losses and imple-
mented various replacement policies to mitigate the impact. Their research demon-
strated that performance degradation could be minimized through appropriate data
replacement strategies. While their work focused on spoof detection in power systems,
our study examines detectable but untraceable losses in network environments.

Yang et al. [143] addressed packet loss in encrypted traffic classification by devel-
oping an Anti-Packet-Loss method based on a Masked Autoencoder. Their approach
intentionally masks portions of training traffic data to enhance the encoder’s ability to
reconstruct missing information. Their evaluation showed 90% classification accuracy
even with 15% packet loss, significantly outperforming conventional deep learning
methods. Although their research targets the same problem of packet loss during
inference, our work differs by evaluating the impact on machine learning models that
are not specifically designed to handle packet drops.

Most recently, Babaria et al. [8] proposed FastFlow a solution to mitigate the effects
of packet loss on ML models for service identification. FastFlow employs a sequential
decision-based classification model that leverages a collection of Long Short-Term
Memory (LSTM) models trained with reinforcement learning to infer traffic classes
using the first few packets of a flow. In the evaluation, the authors show that FastFlow is

1 https://github.com/ENSL-NS/Cost-of-Packet-Loss

https://github.com/ENSL-NS/Cost-of-Packet-Loss

20 the cost of packet loss on ml-based traffic analysis

Service Identification Video startup delay inference

Packets size, count Packets size, number

Packets inter arrival time Throughput

Bytes per packets Segments size, count

TCP Flags, Window, RTT Segments duration

Bytes per packet Inter segments time

Bytes in flight

Retransmissions

Table 3.1: Features Sets

more resilient to packet loss than other state-of-the-art ML models. However, their work
solely applies per-packet probabilistic losses and does not provide a comprehensive
understanding of the underlying impact that packet loss has on the performance of
ML models. To the best of our knowledge, our work is the first to systematically study
the impact of packet loss on ML-based traffic analysis systems, using both probabilistic
and bursty loss models and on multiple traffic analysis tasks.

3.3 Methodology

In this section, we discuss the methodology used to evaluate the impact of packet loss
on ML-based traffic analysis systems. We begin by describing the two use cases we
selected for our analysis: service identification and video startup time. We then discuss
the dataset used for our analysis, including the packet loss models applied.

3.3.1 Traffic analysis tasks

We focus our analysis on two well-studied tasks in the network community: Service
identification [58] and ideo startup time inference [14].

service identification. Service identification is a typical traffic classification
task [38, 115]. The task involves classifying network traffic at the flow level into
corresponding applications, such as YouTube and Netflix. We focus particularly on
early application identification, which consists of using the first few packets—typically
ten or fewer—to identify the application [58]. In our scenario, we utilize the first ten
packets and derive the set of features described in Table 3.1. These features are based
on network parameters such as byte quantity in each direction, packet inter-arrival
time, and transport metrics like TCP windows or bytes in flight. All features listed in

3.3 methodology 21

Table 3.1 are divided by direction: client-to-server and server-to-client. Where possible,
they are further subdivided into various statistical metrics, including standard deviation,
average, maximum, minimum, median, kurtosis, and skewness. This approach aims
to capture hidden patterns that raw features may not effectively reveal. While some
existing works use fewer packets (e.g., only the first four), we elected to use ten packets
as a best-case scenario, recognizing that using fewer packets would render the analysis
even more susceptible to packet loss and distortion of input features.

video startup time inference . Video startup time inference is a fundamental
task in QoE analysis that involves predicting the duration between a user’s request to
play a video and the moment playback actually begins. This metric is widely recognized
as a critical factor affecting user satisfaction and engagement with video streaming
services. In our scenario, we leverage network traffic features collected during the
initial connection and buffering phases to infer the startup delay experienced by users.
Unlike service identification, which relies on the first few packets, video QoE inference
typically utilizes larger temporal windows of aggregated data—generally spanning
multiple seconds, such as ten-second intervals. We specifically focus on startup time
prediction for two strategic reasons: first, it enables us to validate the hypothesis that
larger windows of aggregated data might exhibit greater resilience to packet loss; and
second, it presents a regression problem rather than classification, thereby allowing us
to evaluate the impact of packet loss on a different class of ML tasks with continuous
output variables. For this use case, we do not consider features collected from the
transport layer, as they have been demonstrated to be less effective for this task [14].
Instead, we focus on features related to the video segments, such as the number of
segments downloaded, the size of each segment, and the time taken to download each
segment. We also include features related to the inter-segment time, which is the time
between the end of one segment and the start of the next. This approach allows us to
capture the dynamics of video streaming and how they relate to startup delays. Finally,
as listed in Table 3.1, we extract features about traffic volumes.

3.3.2 Dataset and Model Training

dataset. Our analysis is based on a subset of the dataset collected by Bronzino et
al. [14] in their work on video quality inference. The dataset consists of 9,213 labeled
traces from four major video streaming providers (Netflix, YouTube, Amazon Prime
Video, and Twitch), which we split into two parts: a training set comprising 7,390 traces
(80.21%) and a testing set containing 1,823 traces (19.79%), with some traces excluded
due to labeling issues. Subsequently, each trace was divided into separate traces for
individual flows, and the data was filtered to include only video-related flows. This
process yielded a training dataset of 2,535,163 flows and a testing dataset of 627,524

22 the cost of packet loss on ml-based traffic analysis

flows, maintaining a similar split ratio of 19.84%. The slight variation in percentages
occurs because some traces contain more flows than others.

model training . For both tasks, we selected Random Forest [13] as classification
and regression algorithm, as previous research has demonstrated its superior precision
and recall with lower false positive rates for our use cases [14, 58]. For model training,
we employ AutoGluon [41], a widely adopted AutoML library. AutoGluon automatically
explores effective combinations of input features and hyperparameters to generate the
most effective model. Note that the goal of this paper is not to achieve the best possible
model performance, but rather to evaluate the impact of packet loss on the performance
of ML models. Therefore, we did not perform any hyperparameter tuning or feature
selection beyond what AutoGluon provided. To mitigate overfitting, we constrained
the minimum sample split to 10 and limited the maximum depth of the trees to 10.
These constraints reduce the likelihood of capturing insignificant noise patterns and
enhance the model’s generalization capabilities. The model was trained on 80% of the
dataset without any application of packet loss, ensuring that it learned from clean,
uncompromised data. Packet loss was introduced exclusively during testing to simulate
real-world inference conditions, based on the assumption that the model had been
trained on a lossless dataset. We evaluated the impact of varying packet loss rates on
model performance using the weighted F1 score as our primary metric for classification.
This weighted scoring approach was chosen to prevent misinterpretation of results due
to class imbalance in the dataset, while the F1 score itself provides a balanced measure
that accounts for both precision and recall. For the regression task, we used the error
distributions to observe a detailed analysis of the model’s performance.

3.3.3 Loss Models

We aim to evaluate the impact of packet drop on model performance by implementing
two distinct loss models: a probabilistic model and a bursty model.

probabilistic loss model . In this initial model, we establish a probability p of
packet drop. This probability is applied independently to each packet within a flow
and to each flow within the dataset. This approach yields an aggregate loss measure
for the dataset, expressed as a percentage of total packets lost. By increasing the value
of p, we systematically increase the overall percentage of loss in the dataset. While
percentage of packet loss is a common evaluation metric in network systems, this
approach has certain limitations, particularly in its inability to adequately capture the
nuanced behavior of packet loss within real-world network pipelines.

bursty loss model . The second approach aims to more effectively characterize
burst drops by representing them as a two-state Markov chain. Markov chains have

3.3 methodology 23

Accept Drop1− p1 p2

p1

1− p2

Figure 3.1: State Transition Diagram of the Burst Models

been widely employed to model packet drops for decades [37, 48]. They are particularly
effective for describing bursts of drops by defining a "good" state and a "bad" state,
along with the various probabilities of transitioning between them or remaining in the
current state. In our implementation, these two states correspond to the Accept state
and the Drop state, as illustrated in Figure 3.1. As shown in the figure, p1 represents the
probability of transitioning from the Accept state to the Drop state, while p2 denotes the
probability of remaining in the Drop state. By calibrating these transition probabilities,
we can simulate different frequencies and intensities of burst drops. A high value of
p1 increases the likelihood of burst initiation, representing the probability of network
degradation in a system. Meanwhile, p2 represents the probability of continuing the
burst of dropping packets, which leads us to interpret 1− p2 as the probability of
resolving this drop condition. The lower the value of p2, the more rapidly the pipeline
will respond to the burst and recover from the drop condition.

application of loss models to the dataset. We apply our two loss models
to the test portion of the dataset, which comprises 627,524 flows containing a total of
201,164,351 packets. The resulting packet drop statistics are presented in Tables 3.2 and
3.3. In Table 3.2, the first column represents the probability p of dropping a packet,
the second column shows the total number of remaining packets after applying the
losses, the third column displays the number of packets dropped, the fourth column
indicates the resulting percentage of packet loss, and the final column the quantity
of missing flows. Table 3.3 follows a similar structure, with the distinction that the
first column p from Table 3.2 is replaced by two columns, p1 and p2, representing the
transition probabilities of our two-state Markov chain. The data demonstrate that the
probabilistic drop closely aligns with the overall percentage of packet loss observed in
the trace. Notably, even a relatively low probability of burst initiation (p1) can result in
substantial packet loss, exceeding 10% of the original trace.

It is important to note that the loss models are applied before extracting the first N
packets of a flow. Consequently, in scenarios where ML models require data from the
first ten packets and packets between positions five and nine are dropped, features
are subsequently extracted from packets zero to four and from ten to fourteen. This
approach ensures that the ML model consistently receives the same quantity of packets
for each flow, maintaining consistent input dimensionality despite varying packet loss

24 the cost of packet loss on ml-based traffic analysis

p # Packets Diff % # Missing Flows

0.0 200,164,351 0 0.00 0

0.005 199,164,584 999,767 0.50 145

0.01 198,162,375 2,001,976 1.00 288

0.02 196,158,686 4,005,665 2.00 446

0.05 190,155,893 10,008,458 5.00 2,680

0.1 180,148,648 20,015,703 10.00 9,946

Table 3.2: Traces after application of probabilistic loss

p1 1− p2 # Packets Diff % # Missing Flows

0.0 0.0 200,164,351 0 0.00 0

0.005 0.1 190,644,830 9,519,521 4.76 10,800

0.01 133,593,296 66,571,055 33.26 168,647

0.001 33,560,174 166,604,177 83.23 399,910

0.0001 4,285,699 195,878,652 97.86 506,266

0.01 0.1 181,957,332 18,207,019 9.10 25,673

0.01 100,084,829 100,079,522 50.00 271,475

0.001 18,320,521 181,843,830 90.85 474,142

0.0001 2,186,921 197,977,430 98.91 551,860

Table 3.3: Traces after application of burst loss

patterns. However, as mentioned in 3.2 and 3.3, a large drop can lead to dropping the
entire connection. Thus, it is mandatory to include these missing flows when evaluating
the performance of the models, as forgetting them can lead to high accuracy despite a
high drop rate.

3.4 Analysis

In this section, we describe our analysis on the two use-cases: service identification
and video quality inference. For both use-cases, we first present results on probabilistic
losses, followed by results on bursty losses.

3.4 analysis 25

3.4.1 Service Identification

probabilistic . We apply the probabilistic loss model to the test partition of the
dataset, with results presented in Table 3.4. In this table, p = 0.0 represents the baseline
scenario with no packet drops, where data is served to the model without alteration.
This serves as our benchmark for comparison; the F1 score reaches 0.971 under these
optimal conditions. We note that accuracy and F1 score exhibit similar values, indicating
both strong precision and recall across most classes, even without any packet drops.
We also highlight that, for results with packet drops, we treat the missing connections
as misclassified to avoid artificially inflating performance metrics.

At p = 0.005, we observe only a minor reduction in F1 score, which remains robust
at 0.967. A slightly higher loss rate of p = 0.01 further decreases the F1 score to 0.963,
though the impact remains relatively small. However, when the loss rate increases
to p = 0.02, the F1 score drops more noticeably to 0.954, indicating the beginning of
performance degradation. Beyond this threshold, the decline becomes more pronounced,
with the F1 score decreasing to 0.925 at p = 0.05 and further to 0.879 at p = 0.1. These
results demonstrate that while low levels of packet loss (p < 0.02) have minimal effect
on classification performance, significant degradation occurs once packet loss exceeds
p = 0.02, with substantial performance decline at higher loss rates. However, while the
impact is noticeable, we observe that results remain acceptable even at high loss rates,
with F1 scores close or above to 0.8.

burst. As illustrated in Table 3.5, we apply the burst model to the test dataset.
First, we notice that even when 1− p2 is low, the F1 score remains more affected than
with probabilistic losses, at equivalent percentages of drops. This can be explained
by examining Table 3.3, where drops for p1 = 0.005 and p2 = 0.1 eliminate only
4.76% of the overall packets while missing 10, 800 flows, whereas its equivalent in the
probabilistic model at p = 0.05 drops 5% of the traffic for merely 2, 680 flows. This
demonstrates the potential context loss caused by burst patterns. When burst losses
occur, the model may miss entire connections or long portions of them, leading to a
more significant impact on performance.

However, as 1− p2 reaches 0.01, the F1 score greatly drops, falling below 0.6. This
suggests that burst loss, even at moderate levels, has a more detrimental effect on
performance compared to the probabilistic loss model. As 1− p2 increases further to
0.001, where a large portion of the traffic has been dropped, the decline in performance
becomes more pronounced. This indicates that burst loss patterns have a significant
negative impact on the model’s ability to maintain performance, even with a slightly
lower probability of occurrence.

26 the cost of packet loss on ml-based traffic analysis

p Accuracy F1 Score

0.0 0.972 0.972

0.005 0.967 0.967

0.01 0.964 0.963

0.02 0.954 0.954

0.05 0.927 0.925

0.1 0.885 0.879

Table 3.4: Impact of probabilistic losses on Service Identification use case

p1 1− p2 Accuracy F1 Score

0.0 0.0 0.972 0.972

0.005 0.1 0.926 0.918

0.01 0.618 0.551

0.001 0.265 0.208

0.0001 0.152 0.108

0.01 0.1 0.878 0.862

0.01 0.432 0.363

0.001 0.159 0.117

0.0001 0.087 0.061

Table 3.5: Impact of burst losses on Service Identification use case

3.4.2 Video Startup Delay Inference

probabilistic . Similarly to the previous use case, we apply the probabilistic loss
model to the test partition of the dataset, with results presented in Figure 3.2a. In the
figure, we show error distributions for the regression task, as the difference between the
real startup time collected from the video player and the predicted startup time from
the model. The box plots show both median and interquartile ranges (InterQuartile
Range (IQR)). We observe a slight impact on the median error as p increases. Starting at
−129 for p = 0, we observe a phase of stagnation with a median at −140 for p = 0.005;
−144 for p = 0.01; it begins to drop at p = 0.02 with a median of −170; it further
decreases at p = 0.05 to −246 before ultimately reaching −344 at p = 0.1. Overall, while
the error increses, the median remains relatively stable until p = 0.05. This indicates
that the model remains relatively consistent while suffering from packet drops. While

3.4 analysis 27

No loss p=0.005 p=0.01 p=0.02 p=0.05 p=0.1

Loss rate

−4000

−3000

−2000

−1000

0

1000

2000

3000

E
rr

or
in

m
s

(r
ea

l
-

pr
ed

ic
te

d
)

(a) Probabilistic loss

No loss p1=0.005
1− p2=0.1

p1=0.005
1− p2=0.01

p1=0.01
1− p2=0.1

p1=0.01
1− p2=0.01

Loss rate

−10000

−8000

−6000

−4000

−2000

0

2000

E
rr

or
in

m
s

(r
ea

l
-

pr
ed

ic
te

d
)

(b) Burst loss

Figure 3.2: Impact of loss on the ideo Startup Delay Inference use case

we observe greater variation for IQR values, symptomatic of the model predicting less
consistent values, the overall performance remains relatively stable. This confirms the
intuition that using aggregates over many packets makes the model less sensitive to
sporadic packet loss.

28 the cost of packet loss on ml-based traffic analysis

No loss p1=0.05
1− p2=0.1

p1=0.05
1− p2=0.01

p1=0.1
1− p2=0.1

p1=0.1
1− p2=0.01

Loss rate

0.00

0.25

0.50

0.75

1.00

1.25

1.50
A

ve
ra

ge
ti

m
e

(s
ec

on
d

s)

Figure 3.3: Average time to download a video segment

burst. In contrast to probabilistic losses, for the burst loss we observe a much
greater impact as soon as we reach 1− p2 = 0.1 (as illustrated in Figure 3.2b), with the
median dropping to −230 and −308. We do not show in the figure the results for higher
burst lengths for space saving reasons. However, we observe that the median drops
heavily to −806 for p1 = 0.005 and −2114 for p1 = 0.01. This indicates that the model
is significantly affected by burst losses, even at low probabilities of occurrence. The
IQR also increases significantly, indicating a wider range of errors in the predictions.

To understand the reason behind this behavior, we analyze the features used by
the model. We first study the feature importance obtained at training time using the
mean and standard deviation of accumulated impurity decrease within each tree of the
Random Forest model. We observe that the most important features all relate to the
download of video segments during the initial streaming phase. This is reasonable, as
the model attempts to capture how quickly the video player is capable of downloading
the necessary video buffer required to start reproduction. In particular, we observe that
the most important feature is the average time to download a video segment, which
effectively represents this dynamic (i.e., smaller values suggest higher download rates).
We then study the distribution of the values of this feature across different test datasets
(shown in Figure 3.3). We observe that the distribution of the feature is significantly
affected by the burst loss model, with median values increasing as drops increase. This
result suggests that key packets, used for the segment identification technique [14], are
being lost, leading to a significant increase in the detected time to download video
segments.

Overall, this result shows that, contrary to expectations, even a model that relies on
aggregates over many packets can be significantly affected by burst losses.

3.5 conclusion 29

3.5 Conclusion

In conclusion, this chapter provides an overview of how packet loss in the feature
extraction pipeline may affect the performance ML model performance. We present
comprehensive results for two use cases, evaluated under both probabilistic and burst
loss models. Our findings demonstrate that while probabilistic losses with low p values
(p < 0.02) have minimal impact on model performance, burst losses cause significantly
more degradation even at equivalent drop rates. This holds true for both service
identification and video startup delay inference tasks, counter-intuitively to the notion
that models that use aggregate statistics as input features are less affected by packet
loss. To enhance transparency and reproducibility, we provide a Jupyter notebook2

containing all code, data, analyses, and visualizations to enable replication of our
findings. In the next chapter we will see strategies to avoid and solve losses as soon as
possible to avoid deteriorating too much model performance.

2 https://github.com/ENSL-NS/Cost-of-Packet-Loss

https://github.com/ENSL-NS/Cost-of-Packet-Loss

4
C R U I S E C O N T R O L : D Y N A M I C M O D E L S E L E C T I O N F O R
M L - B A S E D N E T W O R K T R A F F I C A N A LY S I S

Johann Hugon et al. Cruise Control: Dynamic Model Selection for ML-Based Network Traffic Analysis. 2024. arXiv:

2412.15146 [cs.NI][60]

In this chapter, we present a system-driven approach to dynamically select ML
models based on their computational complexity and available system capacity—in
real-time. Our proof-of-concept implementation, Cruise Control, supports multiple
parallel ML tasks with efficient resource allocation across multiple analytical functions.
Experimental results using two real-world traffic analysis tasks show Cruise Control

improves median task accuracy by 2.78% while reducing packet loss by a factor of
four compared to statically-selected models. In addition, Cruise Control offers an
easy-to-configure solution for extracting multiple tasks, while effectively combining
them and selectively collecting features.

4.1 Introduction

ML has rapidly become an indispensable tool for network traffic analysis tasks, thanks
to ML models’ excellence at discovering complex relationships between network traffic
and critical events occurring across different network layers. Consequently, the network-
ing community has increasingly developed sophisticated ML-based solutions to assist
with essential tasks such as traffic classification [10, 68, 104, 106, 116], QoE inference [14,
86, 88, 117], intrusion detection [3, 74, 79], and numerous other critical network analysis
functions [12, 98, 123]. However, deployment of ML models in operational networks
remains a considerable challenge due to the dynamic nature of network traffic and the
system requirements imposed by the need to process large volumes of data in real-time.

ML-based traffic analysis deployments typically employ a multi-stage pipeline that
operates under strict real-time constraints [15, 135]. This pipeline consists of three
critical stages: (1) traffic collection at a network vantage point, (2) transformation of raw
packets into feature representations suitable for ML models, and (3) model execution to
generate analytical outputs. Each stage must operate within tight processing budgets
to prevent packet loss, which can severely inhibit model performance (i. e., accuracy).
For example, this performance degradation is particularly severe for inference tasks
where discriminative features often appear in the initial packet exchanges of a network
flow [8]. Missing these early packets can drastically reduce classification accuracy,
rendering the entire analytical pipeline ineffective.

31

https://arxiv.org/abs/2412.15146

32 cruise control : dynamic model selection for ml-based network traffic analysis

Prior research has addressed this challenge through two main approaches. First, by
designing specialized models that minimize packet requirements [8, 104]. However,
models using this approach remain vulnerable to packet loss when processing budgets
are exceeded and fail to scale to modern network speeds of tens or hundreds of
gigabit per second. The second approach focuses on developing frameworks that help
operators balance tradeoffs between model performance and system constraints such
as latency [135], CPU utilization [15], and memory consumption [68]. In particular,
these works have targeted the first two pipeline stages—traffic collection and traffic
transformations—demonstrating that these stages often create bottlenecks in processing
pipelines, thus requiring optimization to support downstream models. However, these
solutions are limited to targeting static deployment of a single model during runtime.

The static model approaches face fundamental limitations: network deployment
environments exhibit significant variability in topology, traffic patterns, and resource
constraints–making it impossible to select a universally optimal model. Given this
variability, operators typically resort to deploying models designed for worst-case
traffic scenarios to avoid packet loss during peak periods. This conservative approach
introduces a clear systematic inefficiency: during normal (e. g., non-peak) conditions,
the worst-case model results in lower accuracy than that which could be achieved by a
more complex model, given system resources and load [109].

In this chapter, we develop Cruise Control, a complementary, system-driven solu-
tion to adaptively select the best-fit target models for one or more feature extraction
pipelines in parallel, removing the need for operators to select the best performing mod-
els for any given environment a priori. By leveraging real-time insights into the current
system capabilities and traffic characteristics, Cruise Control dynamically selects the
ideal target model from a pool of candidates for each task, ensuring that the system can
effectively characterize traffic as network conditions evolve while avoiding packet loss.
Of course, shifting to such approach requires tackling new system challenges. First,
the system must be able to adapt to changing network conditions without incurring
packet loss due to the overhead of pipeline changes. Second, the system must be able to
monitor the existing processing pipeline and determine whether it is best suited for the
ongoing conditions. Finally, the system must support running multiple heterogeneous
ML tasks (each with different accuracy-cost tradeoffs) in parallel and balance model
accuracy and efficiency across them to ensure effective traffic characterization under
dynamic network conditions.

We address these challenges through the following contributions: first, Cruise

Control minimizes the burden of model deployment by solely requiring a user to
provide a set of models with different accuracy-cost tradeoffs. Second, Cruise Control

implements a selection pipeline that enables parallel feature collection for multiple
models, minimizing overhead. Third, Cruise Control monitors lightweight signals
(i. e., packet loss) to evaluate its current processing capacity and dynamically selects
models based on the system’s current capabilities and the observed traffic. This ap-

4.2 background and motivation 33

proach allows the system to adapt to changing conditions, ensuring that the selected
model remains the best-fit under varying traffic loads.

We implement Cruise Control and evaluate its performance for two real world
traffic analysis tasks: video quality inference and traffic classification. Our results show
that Cruise Control effectively adapts to changing network conditions, selecting the
most appropriate model for the observed traffic and system capabilities. Compared to
existing approaches that aim to select an optimal candidate model for each task based
on offline information, Cruise Control reduces packet loss by a factor of four while
achieving equivalent or better median accuracy. Further, Cruise Control supports the
parallel execution of multiple network analysis tasks, allowing for efficient resource
allocation across different analytical functions without sacrificing performance. This
parallelization ensures ease of use and reduces operational complexity, allowing opera-
tors to perform complex tasks effortlessly, avoiding the need for multiple processing
servers.

4.2 Background and Motivation

Network operators rely on the ability to reason about their networks, from under-
standing the traffic that traverses them to whether they are functioning correctly.
However, answering such questions is increasingly difficult due to multiple factors,
including traffic volume (i. e., relentlessly increasing network speeds)[147] and opacity
(i. e., widespread adoption of encryption)[4, 101]. As such, conventional monitoring
approaches are becoming inadequate [101, 147, 148] as they struggle to cope with
modern Internet traffic characteristics.

To address these challenges, network operators have turned to ML-based solutions [1,
12, 122] for various network monitoring tasks, from traffic classification to quality of
service inference [94]. For example, while encryption makes direct measurement of
application layer performance such as video streaming quality metrics impossible,
ML models are able to accurately infer these metrics from encrypted network flows,
providing crucial insights into user experience [14, 55, 86, 90, 95]. Unfortunately, ML-
based approaches that use static configurations fall short as they fail to capture the
inherent variability of network traffic. In this section we discuss current approaches to
network monitoring using ML and identify challenges that operational deployments
currently face, particularly in the face of packet loss.

4.2.1 ML-Based Traffic Analysis

The typical ML-based traffic analysis pipeline follows a structured approach: First, raw
network traffic is captured and undergoes preliminary processing, including operations
such as header parsing, flow tracking, and data reassembly. The second stage focuses
on feature extraction, where statistical computations and information encoding prepare

34 cruise control : dynamic model selection for ml-based network traffic analysis

0
20

0
40

0
60

0

Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Th

ro
ug

ht
pu

t (
M

PP
S)

Night
Network
Transport
All
Input Traffic

0
20

0
40

0
60

0

Time (s)

Noon

0
20

0
40

0
60

0

Time (s)

Evening

Figure 4.1: Comparison of the impact of three different video quality inference models across
different times of day.

the data for model input. Finally, the processed features are fed into an ML model
to perform the target inference task. Traditionally, the pipeline is evaluated based on
inference performance (e. g., accuracy or F1 score). However, ML network deployments
must operate in real-time and are thus subject to systems-related constraints such as
the ability to extract packets from the network, compute features, and make inferences
at line rates. Failing to do so can lead to packet loss, which compromises model
performance [8].

A naïve solution is to create and deploy models using features with low compu-
tational complexity, leaving the system with processing headroom to accommodate
unexpected traffic spikes [109]. However, this approach can impose an unnecessary
ceiling on model accuracy [15] (e. g., a model with higher accuracy could be deployed
when there is less traffic, and a model with lower accuracy when there is more).

To address this challenge, recent works [8, 15, 68, 104, 135] have proposed approaches
that holistically consider both model accuracy and system performance. For example,
CATO [135] highlighted that the choice of which features to compute—potentially even
more than the selection of the model itself—can significantly affect a measurement
system’s ability to gather the necessary information for effective model execution.
Consequently, CATO proposed a method to automatically generate Pareto-optimal con-
figurations that maximize accuracy while minimizing system resource usage for a given
network environment. However, these configurations, while statically optimal, only
represent a single network environment. Further, network traffic loads are inherently
dynamic, leading to significant load variance over time. The outcome of these factors is
that models that perform well in offline training and testing environments may become
unusable due to packet loss in real-world deployments.

4.2 background and motivation 35

4.2.2 Downsides of Static Model Selection

To illustrate the inefficiencies that can manifest using static model deployment, we
perform a small experiment using a typical ML-based traffic analysis task: video
resolution inference from encrypted traffic [14, 86, 88, 117]. We base our experiment
on models developed in previous work by Bronzino et al. [14], where the authors
evaluate several feature sets and models to infer video quality. These feature sets
map to different layers of the network stack including: Network: basic network flow
features (e. g., throughput in/out, packet counts in/out), Transport: end-to-end latency
and packet retransmission information (e. g., RTT, retransmission in/out), and All:
combined features from network, transport, and application layers (e. g., video segment
sizes, time between video segments). These different feature sets result in three models
with varying accuracy for the same task.

We evaluate the ability of an ML-based measurement system to process traffic for
these three models. As in the rest of the chapter, we measure the ability of an ML system
to support a given model by analyzing whether the system can successfully compute
the features necessary for the model execution (i. e., the feature set) without packet loss.
For this experiment, we implement the different feature sets using Retina [134], a state-
of-the-art feature extraction system and the same system that CATO uses for finding
Pareto-optimal configurations. Retina enables users to efficiently compute features for
subsets of parsed flows. However, changing the feature set in Retina requires a full
system reload, a process that can take several seconds. We deploy the system on a
server equipped with a 100 Gbps network interface and evaluate its performance using
real-world traffic traces. Specifically, we use three 10-minute traces derived from a
one-hour trace collected at Equinix Chicago [20]. These traces are scaled to represent
different traffic regimes throughout a typical day, using ratios inspired by Feldmann et
al.[44]. We use TRex[131] to adjust the traces to reflect night (×0.2), noon (×1.0), and
evening (×1.6) traffic volumes. This is achieved by modifying the inter-packet time in
the original trace, thereby scaling the number of packets and flows. Additional details
about the testbed setup are provided in Section 4.5.

Figure 4.1 shows the throughput for three periods of the day in packets processed
per second by the system. Throughputs for the feature sets are represented by blue
circles, orange squares, and green triangles respectively, while the black line represents
the incoming load. Packet loss can inferred from the difference between the input traffic
and throughput. We observe for the Night scenario, all throughputs align with the
input traffic load, indicating successful processing without packet loss for all feature
sets. Conversely, for Noon, we observe that the All feature set results in loss, while the
other two are able to process traffic without loss. Finally, the figure shows that in the
evening the system can process traffic without loss only for the Network feature set, the
set that is least computationally expensive (and least accurate).

36 cruise control : dynamic model selection for ml-based network traffic analysis

p1 1− p2 Network (MAE) Transport (MAE)

0.0 0.0 821.8 560.6

0.005 0.1 1084.9 667.5

0.01 1334.5 1429.9

0.001 1785.4 6279.5

0.01 0.1 1301.4 714.2

0.01 2322.9 2996.1

0.001 3596.8 10454.0

Table 4.1: Impact of bursty losses on video startup time inference as Median Absolute Error
(MAE) in ms.

4.2.3 The Accuracy Costs of Packet Loss

The results of the experiment show that static model selection introduces inherent
compromises in system performance. Two solutions to this tradeoff exist: either the
operator selects a model that is guaranteed to work under all conditions, or the operator
select a model that is guaranteed to work under most conditions, coping with possible
packet loss. However, the former approach leads to suboptimal model performance
during normal operations, while the latter approach can lead to data loss during peak
periods.

To illustrate this tradeoff, we reproduce the experiment from Chapter 3. Specifically,
we consider one of the two inference tasks presented by Bronzino et al. [14]: video
startup time inference. For this task, the first 10 seconds of features collected are used
to infer the delay between the start of the session and instant the video player actually
starts playing the video. We train three models (corresponding to the previous feature
sets) using the dataset presented in the paper. However, we test it both against an
unaltered test set, as well as against test sets where network traffic has been modified
via the introduction of packet loss. In particular, we introduce bursty loss which is
typical for network systems. Our bursty loss model is based on a simple Markovian
model that uses two loss states where p1 represents the probability of transitioning
from a no-loss state to a state of bursty loss and p2 denotes the probability of remaining
in the loss state. Results are shown in Table 4.1.

Two main observations can be made from the table. First, the Network model show,
under no losses conditions, a 146.59% higher median absolute error compared to a
model using Transport layer features (we omit the All model as presented trends are just
worsened), rendering it sub-optimal. Second, bursty loss impacts faster the performance
of the Transport model. While recent work [8] has shown that loss can negatively impact

4.3 cruise control 37

RX_QUEUE 0

Features Computation (§4.3.2)

Post-
processor

Model Selection (§4.3.3)
Queues

Notify

Indirection
table

Features

Monitor
Collect

RX_QUEUE [0..N-
1]

RX_QUEUE N

Update

Incomming
Traffic

Features Extraction

Monitoring

Output

Dynamic Selection

Poll

Poll

Read

Worker
N

Workers

Configuration (§4.3.1)

m1 m2 m3 mX

Packets

Worker
[0..N-1]

Figure 4.2: Cruise Control system overview.

other tasks that use single packets for inference, this confirms that even models that use
statistics over multiple packet aggregates can be affected in the presence of bursty loss.
Overall, this experiment shows the inherent inefficiencies in model accuracy and system
performance due to static model selection and the need to avoid packet losses. We
conclude that, to achieve efficiency gains in model accuracy and system performance, a
dynamic system adaptation to network load is required.

4.3 Cruise Control

In this section, we present Cruise Control, a system for self-adaptive model deploy-
ment for ML-based network traffic analysis. Cruise Control is built on two key design
principles. First, it aims to simplify deployment by minimizing the overhead of offline
configuration and model selection. Second, it dynamically selects the best-fit model
based on current system capacity and traffic conditions, maximizing the accuracy of
analytical tasks while minimizing packet loss.

To realize these principles, Cruise Control implements three main design choices,
shown in Figure 4.2:❶ It simplifies deployment by requiring only a ranked list of models
per task, eliminating complex setup overheads (4.3.1). ❷ It achieves line-rate feature
extraction and seamless model switching through a coordinated architecture of workers
and a post-processor core; additionally, it minimizes multi-task processing overhead
by merging common features and eliminating redundancy (4.3.2). ❸ It dynamically
selects the most appropriate model in real-time using lightweight monitoring signals,
adapting to changing network conditions (4.3.3). The rest of this section details the
modules implementing these design principles, as shown in Figure 4.2.

4.3.1 System Configuration

Supporting dynamic model switching for traffic analysis requires understanding the
trade-offs between feature collection costs, model accuracy, and system capacity under
varying network conditions. Cruise Control minimizes deployment hurdles by elim-

38 cruise control : dynamic model selection for ml-based network traffic analysis

Model # Cost Accuracy

m9 2272 0.935

m8 1696 0.934

m7 1248 0.933

m6 960 0.932

m5 736 0.931

m4 704 0.926

m3 480 0.924

m2 320 0.900

m1 256 0.799

Table 4.2: Video quality inference models.

inating the need for manual fine-tuning of candidate models for specific workloads,
requiring users to solely provide a ranked list of models and their associated feature
extraction sets as input. While selecting optimal models without prior knowledge of
the deployment environment is challenging, recent research [15, 135] has developed
methods to quantify the accuracy-cost tradeoff. We leverage CATO [135] to build offline
input configurations which, when coupled with Cruise Control’s dynamic model
switching capabilities, significantly reduces deployment overhead.

Table 4.2 shows the resulting configuration used as system input. It consists of models
labeled mX, where X represents the accuracy-ordered index (m1 being the least accurate
and least computationally expensive). To create this configuration, we applied CATO’s
methodology to identify the Pareto front of candidate models illustrated in Figure 4.3.
We started with 10 unitary features from Bronzino et al. [14], representing data collected
across three protocol stack layers. For clarity and conciseness, we aggregate these into a
reduced set of representative features in our analysis. A comprehensive enumeration
of the original features can be found in Bronzino et al. [14], and we therefore do not
reproduce it here. While the original paper contains more features, we aggregated
those computed from the same information (e. g., different statistical representations
of the same feature). Through CATO’s approach, we reduced the possible feature
combinations from 1023 to just nine optimal configurations, with those closer to the top
left of the Pareto front being preferred. Although Cruise Control leverages CATO’s
efficient computation method, it is not tied to this specific algorithm—alternatives could
be used, requiring only that feature sets be ordered by accuracy and cost.

4.3 cruise control 39

0 1000 2000 3000 4000
Estimate cost (CPU cycles/packet)

0.65
0.70
0.75
0.80
0.85
0.90
0.95

Ac
cu

ra
cy

Pareto Front Models
Dominated Models 1

2
3
4
5
6
7
8
9
10

Features

Figure 4.3: Video quality inference Pareto front.

4.3.2 Dynamic Feature Computation

The online phase of Cruise Control consists of two key components, illustrated in
Figure 4.2: the Feature Computation module and Model Selection module. The Feature
Computation module handles packet processing, connection reassembly, feature ex-
traction, and the computation of statistical features required for ML model execution.
The Model Selection module gathers metrics to monitor system performance and deter-
mines the set of features to be collected for the target model. We describe the Model
Selection module in Section 4.3.3.

packet processing parallelization. Once incoming packets are received
by the NIC, they are processed by the Feature Computation module, which extracts
the features required by the selected model, aggregates them, and prepares them for
consumption by the model. The Feature Computation module consists of two primary
components: Workers and a Post-Processor. The Workers handle feature extraction
directly from incoming packets based on the feature set selected by the Model Selection
module. Periodically, the Post-Processor aggregates these features and exports them
for use by the model. Workers operate on dedicated CPU cores and perform feature
extraction tasks, including packet filtering, pre-processing (e. g., header parsing), and
basic feature computations (e. g., calculating flow throughput or packet counters).
Cruise Control leverages multi-core architectures to parallelize packet processing
across two dimensions. First, each Worker processes a subset of the traffic. To account
for features that depend on entire connections rather than individual packets, all
packets belonging to a given network flow are processed by the same Worker. This is

40 cruise control : dynamic model selection for ml-based network traffic analysis

done via Receive Side Scaling (RSS). Second, a backup Worker is instantiated to handle
load while one of the Workers exports features to the Post-Processor.

The mapping between connections and Workers is managed through an indirection
table (illustrated in Figure 4.2), which routes packets to the appropriate Worker. Each
Worker maintains a dedicated hashmap to store the necessary data for monitored
network flows. Each hashmap entry contains the set of features computed for a specific
connection, along with the required flow state information.

When a new packet enters the pipeline, it is directed to the corresponding Worker. If
the packet belongs to a new flow, the Worker first determines which features need to
be computed. It consults the shared configuration, which is continuously updated by
the Model Selection module (see Figure 4.2). This configuration dynamically specifies
the required features. Based on this information, the Worker initializes and allocates
the necessary data structures, which are then cached for future packets from the same
connection. For packets from known connections, the Worker accesses the pre-existing
structures associated with the connection, updates relevant counters, extracts header
information, and stores the data required for the previously requested features. Since
the selected features are determined during the processing of the connection’s first
packet, the Worker does not need to repeatedly access the configuration. This design
choice ensures consistency in feature computation for the duration of a network flow.
However, this approach comes with a trade-off: it limits the system’s ability to quickly
adapt to changes in the selected features. Nevertheless, this trade-off is necessary to
maintain consistency, as certain features rely on historical data to be computed (e. g.,
packet interarrival time distributions or video segment size distributions).

multi-task support. Real-world scenarios typically require simultaneous execu-
tion of multiple traffic analysis tasks [133]. Dedicating separate servers to each task
is both inefficient and costly. Cruise Control addresses this challenge by efficiently
handling feature extraction for multiple ML tasks concurrently while maintaining its
key principles. When a new connection appears, Cruise Control combines features set
from each task to avoid duplicate feature extraction and leverage intersection between
required features. This combination is enabled by designing required features as com-
posite sets of atomic features. Internally, each feature set receives a unique identifier
that can be decomposed into an N-bit representation, with each bit corresponding to an
atomic feature. During processing, bits with value 1 trigger extraction of corresponding
features, while bits with value 0 are skipped. This approach allows straightforward
combination of feature sets from multiple tasks using a bitwise OR operation, produc-
ing the final extraction set for incoming connections without additional overhead or
packet duplication. Additionally, since tasks may require different packet quantities,
the system extracts the higher number of packets requested.

4.3 cruise control 41

feature export. Periodically, Cruise Control exports the computed features from
the Workers to the Post-Processor. The Post-Processor, itself running on a dedicated
core, collects the features extracted by the Workers, computes statistical features, and
formats the output for the machine learning model. The interval between two exports
is referred to as the export_window. The act of exporting collected features is often
overlooked in existing work that emphasizes feature extraction [68, 135]. However, this
operation can be resource-intensive, incurring significant CPU overhead and memory
transfers, yet it is essential for passing data to the ML model.

To perform the export, incoming traffic processing on a Worker must be temporarily
halted to clear the hashmap storing the features. During this time, Workers are unable
to process incoming traffic, potentially leading to significant packet drops if precautions
are not taken. In our experiments, we observed that this export process can take several
seconds to complete. To mitigate this, we exploit concurrent redundancy to implement a
solution in Cruise Control. When Cruise Control starts, a backup Worker is created,
as shown in Figure 4.2. Then when export_window is reached, the monitor swaps
one of the current Workers and the backup Worker in the indirection table. This will
cause traffic to be redirected to the new Worker, then the Monitor will notify the
selected exporting Worker that it has been swapped. It can then export its data to the
Post-Processor without packet loss.

Once the export is complete, the Worker is designated as a backup, ready to handle
traffic during the next export cycle. At each export_window, the Worker clears its
hashmap and sends the collected data to the Post-Processor. The export_window interval
depends on the specific use case and the hardware capabilities, particularly the available
memory. A shorter export_window requires less memory but introduces significant
overhead. Conversely, a longer export_window reduces overhead but risks memory
saturation and may be unsuitable if features must be delivered to ML models at shorter
intervals.

4.3.3 Adaptive Model Selection

The Model Selection module takes the pool of feature sets listed in the input config-
uration and determines which model to use based on the ongoing load experienced
by the system. Many challenges lie behind this task. First, monitoring the system’s
state cannot rely on heavyweight profiling that might itself cause increased system load
and lead to packet loss. Second, the system must implement an intelligent algorithm
capable of both detecting whether the system is overloaded, thus triggering selection of
a more lightweight feature set, as well as whether the system has resources to spare,
thus triggering a switch to a more complex feature set. We solve the first challenge by
relying on a lightweight signal, i. e., packet loss, to monitor the system’s state. This
is done by a dedicated Monitor that tracks the state of the rx_queues used to receive

42 cruise control : dynamic model selection for ml-based network traffic analysis

Algorithm 1 Feature set selection algorithm
1: mon_window: Time window for monitoring metrics
2: m_i : Index of the current candidate features set
3: n_drops: Dropped packets since the last cycle
4: dec_factor: Decrease factor used when a drop occurs
5:
6: loop
7: if n_drops > 0 then
8: mi ← ⌊ mi * dec_ f actor ⌋
9: else

10: if t_since_last_update ≥ mon_window then
11: mi ← mi + 1
12: t_since_last_update← 0
13: end if
14: end if
15: end loop

packets from the NIC. We monitor the rx_miss counter, which counts the number of
packets dropped by the hardware due to the queues being full.

methodology. We tackle the second challenge by designing an algorithm that
leverages detected losses—or their absence—to determine whether to switch between
models. We propose the algorithm outlined in Algorithm 1 to select a feature set based
on the system’s state. Note that Cruise Control is not tied to this specific algorithm,
and alternatives could be employed. The candidate feature sets are indexed in increasing
order of complexity, with the currently selected set represented by the variable mi. To
prevent system saturation, the algorithm continuously monitors for packet loss (line
7). When loss is detected, mi is adjusted using a multiplicative decrease (dec_ f actor),
selecting a feature set with lower CPU cost. Conversely, the algorithm additively
increases mi to explore more complex feature sets, doing so every mon_window seconds
(line 10). This Additive Increase/Multiplicative Decrease (AIMD) strategy is analogous
to congestion control mechanisms used in TCP algorithms that aggressively downgrade
transmission rate upon detecting a packet loss. Similarly, Cruise Control aggressively
downgrades to a simpler model when a loss is detected and cautiously explores more
complex models when no losses occur. The intuition behind this approach is that a
production deployment of Cruise Control could likely run multiple models in parallel,
each with different accuracy and CPU cost. As such, we seek convergence to a balance
of ideal feature sets that do not favor one model over another. We evaluate our approach
and compare it with alternatives in Section 4.5.4.

For Cruise Control to work effectively, the mon_window and dec_ f actor parameters
must be carefully calibrated based on model accuracy requirements and specific use
cases. A higher mon_window value creates a more stable system by causing more

4.3 cruise control 43

0 50 100 150 200 250 300
Time(s)

m1

m2

m3

m4

m5

m6

m7

m8

m9

Ac
cu

ra
cy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pa
ck

et
 lo

ss
 (%

)

Figure 4.4: Timeseries of Cruise Control model selection algorithm. The blue line represents
the selected feature set, while the red line shows the number of dropped packets

over time.

gradual transitions to complex feature sets. Conversely, a lower mon_window enables
quicker feature set upgrades but increases the risk of system saturation and packet
loss. The dec_ f actor determines how many feature sets are skipped when drops are
detected. A higher dec_ f actor reduces the likelihood of subsequent losses by selecting
significantly simpler feature sets, though potentially sacrificing accuracy. After each
change, the monitor updates the Workers’ feature sets as shown in Figure 4.2. Finally,
note that for supporting multiple parallel tasks, the algorithm requires adaptation
to accommodate multiple mon_window values. This modification updates line 11 in
Algorithm 1 by implementing a loop to test each mon_window rather than just one.
However, when drops are detected (line 7), the model complexity (m) must be reduced
for all tasks simultaneously.

example . To demonstrate the behavior of this algorithm in a practical scenario, we
run Cruise Control using a sample traffic trace: the first five minutes of the CAIDA
dataset previously utilized [20]. The results are presented in Figure 4.4. Each horizontal
line in the figure represents a feature set shown in Table 4.2. The accuracy of each
corresponding model is shown on the left y-axis, with candidate feature sets spanning
accuracy values from 0.7994 (m1) to 0.9353 (m9). The blue line illustrates the feature set
selected by Cruise Control over time, while the red line (right y-axis) represents the
percent of dropped packets observed every second.

As shown, we observe an initial phase where Cruise Control iteratively increases
the complexity of the computed feature sets, transitioning to more accurate models. 98

seconds into the experiment the system detects packet losses, prompting the algorithm

44 cruise control : dynamic model selection for ml-based network traffic analysis

to rapidly downgrade to a less complex feature set. In this example, with dec_ f actor set
to 0.5, the algorithm switches from feature set m9 to m4. When a second drop occurs at
132 seconds, the system further reduces complexity, falling back to m3. An interesting
behavior appears at 247 seconds where a transition to a less complex feature set occurs
(m9 to m4), but the system continues experiencing packet drops, immediately triggering
a second transition down to m2. Finally, at 256 seconds, loss triggers a drop down to m1.
It is important to note that these changes occur immediately upon detection of packet
drops by the monitor, rather than at each mon_window interval. The mon_window value
is used exclusively for incrementing to more complex feature sets.

4.4 Prototype Implementation

In this section, we present the proof-of-concept implementation of Cruise Control, as
well as the two use case traffic analysis tasks currently implemented in the system
release.

4.4.1 Software prototype

We implement Cruise Control in Rust to leverage its features for ensuring memory
and thread safety while utilizing modern packet processing frameworks to maximize
packet processing efficiency. To handle high speed traffic, Cruise Control bypasses
the kernel to avoid bottlenecks caused by the network stack [19, 138] using the Intel
DPDK [29]. DPDK allows NIC to offload packets to a dedicated CPU core’s memory
space without interruption by using Direct Memory Access (DMA). Further, DPDK
implements Receive Side Scaling (RSS) to distribute the connection across multiple
CPU cores. We leverage this capability to share the connections between multiple CPU
cores and to swap traffic from one core to another when a worker needs to export its
hashmap to the post-processor.

Our prototype builds on a customized version of Retina1, extending its monitoring
core to support more complex tasks such as dynamic worker reconfiguration and
periodic feature export via updates to the Indirection Table. We leverage Retina[134] pri-
marily for its convenient and extensible Rust Application Programming Interface (API)
for DPDK. However, we make minimal use of Retina’s higher-level features—relying
mainly on basic packet filtering and the DPDK runtime environment it provides. As a
result, our system interacts closely with core DPDK functionalities via Retina, which
we believe could make it straightforward to adapt to other DPDK-based environments.
We implement a worker that extracts monitor-specified features at line rate and exports
them periodically, and a post-processor that compute and formats these features for ma-
chine learning models. The use of a dynamic trait ensures extensibility and provides a

1 Retina v0.1 from the original chapter

4.4 prototype implementation 45

Model # Cost Accuracy

m3 1184 0.970

m2 1056 0.898

m1 704 0.824

0 2000 3500
Estimate cost (CPU cycles/packet)

0.65
0.75
0.85
0.95

Ac
cu

ra
cy

Pareto Front Models
Dominated Models 1

2
3
4
5
6

Table 4.3: Service recognition models. Figure 4.5: Service recognition Pareto front.

shared interface that enables seamless coordination between the worker, post-processor,
and the feature set. In total, our prototype implementation was ~3300 lines of Rust
code.

4.4.2 Use Cases

We implement two typical traffic analysis tasks, presented in Chapter 2: video streaming
quality inference from encrypted traffic and service recognition.

video quality inference . The first use case for Cruise Control focuses on in-
ferring streaming video quality. We implement the feature sets from Bronzino et al. [14],
prioritizing those identified by the Pareto front analysis in Section 4.3.1. These include
basic network flow metrics (throughput in/out, packet counts), end-to-end performance
indicators (RTT, retransmission statistics), and application-layer information derived
from traffic patterns (video segment sizes, inter-segment timing). Based on our ranked
list, we configure Cruise Control to operate with nine target models optimized for
this use case. This use case is particularly well-suited for our system, as it requires
continuous feature extraction throughout a flow’s entire lifetime, making performance
heavily dependent on the total number of packets processed.

service recognition. For the second use case, we focus on service recognition,
one of the most studied traffic analysis tasks [4, 142]. We focus on early flow detection,
now a standard identification approach [81, 104, 116], utilizing just the first 10 packets
of each connection. Unlike the video quality inference use case, this task’s collection
cost is primarily determined by the number of flows rather than packets, with the first
packet carrying particular significance due to memory structure initialization costs.

We apply the same Pareto front methodology as in the previous use case. We
utilize six features from the video quality analysis, excluding the four video segment
identification features. Additionally, we consider raw headers (IP/TCP) as a feature—a

46 cruise control : dynamic model selection for ml-based network traffic analysis

representation recently combined with deep learning models for more accurate traffic
identification [58, 116]. Raw headers require minimal computational complexity since
no calculations are needed for extraction, though they are more memory-intensive. This
memory cost is not reflected in our current CPU cycle-based metric2. Consequently,
raw headers offer high precision at low measured cost, causing the Pareto front to be
composed by only three target models. The resulting Pareto front appears in Figure 4.5
and Table 4.3, with three feature sets selected from the original 63. The raw headers
feature set is represented as model m3.

4.5 Evaluation

We evaluate Cruise Control’s performance using several scenarios that allow us to
compare its performance in terms of accuracy and loss rates versus static models,
as well as to illustrate the effects of tunable parameters in Cruise Control. In all
experiments, Cruise Control uses two Workers with only one active at a time, as
presented in Section 4.3, except in the multicore experiments where multiple Workers
run concurrently. This setup simplifies the following analysis.

hardware environment. Our testbed consists of two identical servers, each
equipped with dual 16-core AMD EPYC 7343 processors and a 100GbE Intel E810

NIC with 384GiB of DDR4 split accros two NUMA. Both servers are connected to
a shared 100GbE switch. One server is dedicated to traffic generation using Cisco’s
TRex [131], which replays real network traffic from capture files. This traffic is sent to the
switch, where it is mirrored to the second server running Cruise Control. The testbed
simulates a realistic environment in which a network operator monitors traffic on a
specific span port. It is worth noting that the use of AMD CPUs precludes leveraging
Intel’s Data Direct I/O Technology (DDIO), which facilitates direct transfers from the
NIC to the CPU cache.

network traffic . To mimic realistic traffic conditions, we use a one-hour trace
collected at Equinix Chicago in 2016 [20]. The selected trace is a traffic capture available
upon request from the CAIDA’s website (20160121). Throughout the trace, the through-
put remains relatively constant, with an average rate of approximately 10 Gbps. The
trace’s rate fluctuates between 1 MPPS and 1.2 MPPS. To simulate different traffic rates
in our experiments, we adjust the inter-packet time using TRex. As with the experiment
discussed in Section 4.2, we use three different traffic profiles: noon, evening, and
night. The noon profile is used as the base profile, with the evening profile scaled by a
factor of 1.6 and the night profile scaled by a factor of 0.2. Note that the trace contains
intermittent gaps of approximately one second. Although the exact origin of these
gaps is unknown, they may be caused by artifacts introduced during data capture or

2 A cost metric based on memory usage could also be used. We leave this for future exploration.

4.5 evaluation 47

anonymization. They were retained in our dataset. This decision was made to reflect
realistic and potentially adverse conditions, under which Cruise Control continues to
perform robustly.

evaluation objectives . We design our experiments to answer the following
questions:

❶ How does Cruise Control perform under varying workloads? We demonstrate that
under realistic traffic conditions typical of production deployments, Cruise Control

improves median accuracy by 2.78% while reducing packet loss by a factor of four
compared to statically-selected models, the current state-of-the-art approach (4.5.1).

❷ What is Cruise Control’s overhead? We show that Cruise Control outperforms static
configurations for both long-duration experiments and short experiments that do not
require feature exports (4.5.2).

❸ How scalable is Cruise Control? We demonstrate that Cruise Control effectively
scales on multi-core architectures without incurring excessive synchronization overhead
(4.5.3).

❹ Does Cruise Control ease the burden of parallel feature collection? We show that Cruise
Control can be easily configured with multiple parallel analysis tasks without signifi-
cantly affecting model accuracy or packet loss (4.5.4).

❺ How do tunable parameters affect Cruise Control’s performance? We evaluate Cruise

Control’s performance under different mon_window values, selecting eight seconds as
the optimal value for all other experiments based on our findings (4.5.5).

4.5.1 Performance Under Varying Workloads

We evaluate Cruise Control’s ability to adapt to evolving traffic patterns typical in real-
world network deployments. Using three distinct traffic profiles (noon, evening, and
night) described earlier, we implement abrupt transitions between profiles to assess the
system’s responsiveness to sudden load changes. We compare Cruise Control against
state-of-the-art systems like Retina [134] and CATO [135], which require pre-selecting
features before deployment and need substantial downtime to reconfigure. For our
experiments, we use a modified version of Retina with feature export capabilities—a
necessary adaptation to prevent memory exhaustion during extended tests (detailed in
Section 4.5.2). We test Retina using all optimal configurations identified from our Pareto
front analysis and label results according to the model used. We perform experiments
using a single Worker core, as our goal is to compare Cruise Control’s performance
against static configurations. We evaluate multi-core scalability in Section 4.5.3.

cruise control improves both accuracy and packet loss . Figure 4.6a
illustrates the performance comparison, plotting selected models against packet loss

48 cruise control : dynamic model selection for ml-based network traffic analysis

0 10 20 30 40 50
Packet loss (%)

m1

m2

m3

m4

m5

m6

m7

m8

m9
Se

le
ct

ed
 m

od
el

 (u
sa

ge
 ra

tio
)

Better

Static features set
Cruise Control

(a) Video quality inference

0.0 0.1 0.2 0.3 0.4
Packet loss (%)

m1

m2

m3

Better

Static features set
Cruise Control

(b) Service Recognition

Figure 4.6: Different time of day workload

rates (x-axis). Orange circles represent static configurations (Retina), while the blue
square denotes Cruise Control. Note that, since CAIDA traffic is unlabeled, we cannot
directly evaluate ML model performance—which is beyond the scope of this chapter.
For Cruise Control, which dynamically employs multiple feature sets, we show the
usage ratios of different models (ordered by their offline performance as shown in
Section 4.3.1). In particular, we show the median model selected along with the first
and third quartiles. The optimal would appear in the top-left corner, representing the
configuration with the highest accuracy and zero packet loss.

For the video quality inference use case (Figure 4.6a), all static feature sets beyond
m2 incur excessive packet loss rates (>9%), making them impractical for deployment.
In contrast, Cruise Control achieves just 0.264% loss hile operating on m2 or better
models 75% of the time. Even m2 itself, which might be selected in static deployments
to avoid unacceptable losses, performs worse than Cruise Control, with a higher
packet loss rate of 1.57%.

For the service recognition use case (Figure 4.6b), packet loss rates are generally
lower than in the first use case, due to the reduced analysis complexity (processing
only the first 10 packets per connection). Nevertheless, Cruise Control consistently
outperforms static configurations, remaining on top-performing models 80% of the
time while also delivering significant reductions in packet loss.

cruise control self-adapts to sudden workload changes to prevent

packet loss . We further investigate these results by examining the causes of

4.5 evaluation 49

0 250 500 750 1000 1250 1500 1750
Time(s)

0.0

0.5

1.0

1.5

2.0

In
pu

t T
ra

ffi
c

(M
PP

S)

0

10

20

30

40

Pa
ck

et
 L

os
s (

%
)

(a) Injected traffic

0 250 500 750 1000 1250 1500 1750
Time(s)

m1

m2

m3

m4

m5

m6

m7

m8

m9

Co
nf

ig
ur

at
io

n

0

10

20

30

40

Pa
ck

et
 lo

ss
 (%

)

(b) m2

0 250 500 750 1000 1250 1500 1750
Time(s)

m1

m2

m3

m4

m5

m6

m7

m8

m9

Co
nf

ig
ur

at
io

n

0

10

20

30

40

Pa
ck

et
 lo

ss
 (%

)

(c) m3

0 250 500 750 1000 1250 1500 1750
Time(s)

m1

m2

m3

m4

m5

m6

m7

m8

m9

Co
nf

ig
ur

at
io

n
0

10

20

30

40

Pa
ck

et
 lo

ss
 (%

)

(d) Cruise Control

Figure 4.7: Timeseries for static feature sets and Cruise Control for video quality inference

packet loss, using the first use case as a representative example. Figure 4.7 presents a
time series of the traffic profile (Figure 4.7a) alongside system behavior data for both
Cruise Control (Figure 4.7d) and two representative static configurations (Figures 4.7b
and 4.7c). These graphs display model accuracy (blue/left y-axis) and packet losses
(red/right y-axis) throughout the experiment. With the m3 static feature set, minimal
drops occur during the ’noon’ traffic profile (0-600 seconds), primarily coinciding
with export events. During the ’evening’ profile (600-1200 seconds), the system cannot
compute m3 for all packets, resulting in significant losses. The ’night’ profile (final
10 minutes) processes without loss. We plot the average accuracies of m2 and m3 as
horizontal blue lines at 0.899 and 0.9245, respectively. However, static configuration
accuracy becomes unpredictable during packet loss due to randomness, particularly
evident during peak traffic (600-1200 seconds) where m2 experiences approximately 5%
loss and m3 reaches 15%.

In contrast, Cruise Control adapts dynamically, as shown in Figure 4.7d. During
the first 10 minutes, it progresses through the Pareto front models to reach the most
accurate ones, stepping down to less complex models when losses occur. At the 600-
second mark, when traffic increases, a burst of packet loss triggers Cruise Control to
adjust to the least accurate (but least costly) model m1, which successfully processes
traffic without loss, thus performing even better than m2. When traffic decreases at
1200 seconds, Cruise Control reverts to the most accurate model. This experiment
demonstrates Cruise Control’s ability to adapt to changing loads while minimizing
losses compared to static configurations. Though Cruise Control introduces some
accuracy variability, it effectively prevents and responds to packet loss while achieving
higher accuracy during periods of excess processing capacity.

50 cruise control : dynamic model selection for ml-based network traffic analysis

Video quality inference

Dataset m3 m4 m5 m6 Cruise Control

CAIDA Pkt loss (%) 0.047 0.357 0.490 13.041 0.033

Accuracy 0.924 0.926 0.931 0.932 0.931

No Export Pkt loss (%) 0 0.064 0.062 11.393 0.043

Accuracy 0.924 0.926 0.931 0.932 0.931

Service recognition

Dataset m1 m2 m3 Cruise Control

CAIDA Packet loss (%) 0.212 0.234 0.343 0.117

Accuracy 0.824 0.898 0.970 0.970

No Export Packet loss (%) 0 0.001 0.013 0

Accuracy 0.824 0.898 0.970 0.970

Table 4.4: Performance comparison between static model and Cruise Control for video quality
inference and service recognition

4.5.2 System Overhead

Our previous experiment demonstrates Cruise Control’s advantages under rapidly
changing traffic conditions. Here, we show that Cruise Control also outperforms static
configurations for both longer, steadier workloads and shorter workloads that do not
require feature exports.

long workloads . We evaluate our system using a complete 1-hour CAIDA trace
with a steady traffic rate of approximately 1.1 MPPS (4.2× 109 packets total). Table 4.4,
section video quality inference, CAIDA’s dataset shows that Cruise Control performs
well in this realistic scenario. Overall, it experiences minimal packet loss—lower than the
static feature set m3 (by about 0.05%)—while primarily utilizing m5, which loses 0.49%
of packets. For the second use case (Table 4.4, section Service recognition, CAIDA’s
dataset), Cruise Control primarily uses m3 while providing almost 3× lower packet
loss. As noted earlier, some minimal losses during exports are inevitable—the necessary
trade-off for reducing end-to-end latency and enabling longer experiments without
memory exhaustion. However, this experiment demonstrates that Cruise Control

effectively handles longer, steadier workloads while maintaining low packet loss rates
and high accuracy.

short workloads . To verify that our results are not artifacts created by Cruise

Control’s export mechanism, we conduct a scaled-down experiment limited by available

4.5 evaluation 51

RAM. This test includes only five minutes of traffic with all features kept in memory,
eliminating any overheads related to hashmap transfers to the post-processor. Results
appear in Tables 4.4 (No Export dataset). Cruise Control’s behavior remains consistent
with previous experiments. In this scenario, Cruise Control experiences slightly more
packet loss (0.043%) than m3 (0%), but performs better than m4 and m5 (0.062% and
0.064% loss, respectively) while achieving median accuracy equal to m5. This again
highlights Cruise Control’s advantage over static configurations—significant accuracy
improvements with minimal packet loss penalties. For the second use case (Table 4.4),
we observe insignificant packet loss across (less than 0.001) all models except m3, which
experiences drops at startup due to processing only the first 10 packets of each flow.

4.5.3 Multi-core Scalability

Our previous experiments focused on single-core scenarios to demonstrate Cruise

Control’s adaptability to changing workloads. We now assess system scalability through
a dedicated multi-worker (i. e., multi-core) benchmark. We focus on the worst-case
scenario: new connection arrivals. In this test, each packet represents a new connection,
forcing the system to perform high-cost operations including configuration checks, data
structure creation, and storage in thread-local hash maps. The following results are
presented in Millions of connections per second (Mcps).

Table 4.5 shows that the system scales effectively with increasing worker counts.
Moving from one to two workers, throughput doubles from 1 to 2 million connections
per second (Mcps), indicating near-perfect scaling. At four workers, throughput reaches
2.5 Mcps, indicating diminishing returns relative to ideal linear scaling. This behavior
could potentially be attributed to unfairness of RSS[9], we leave exploration of this
to future work. Notably, with eight workers, the system reaches 3 Mcps, significantly
exceeding real-world traffic levels, such as those observed in CAIDA traces, which
report only 23.92 thousand new connections per second. As these tests represent worst-
case scenarios where each packet establishes a new connection, we anticipate superior
performance in realistic environments.

It is worth noting that experiments at 6 Mcps and 8 Mcps on eight workers, and 8

Mcps on four workers, terminated prematurely due to memory exhaustion before the
allocated 10-minute duration. This highlights the importance of careful memory man-
agement when utilizing multiple workers. The primary challenge involves thread-local
hashmaps—while providing processing advantages through worker-specific storage,
improperly dimensioned hashmaps require runtime resizing, resulting in packet pro-
cessing failures and consequent losses. Additionally, in the experiments referenced in
Table 4.5, we apply identical parameters across different worker counts. Since only one
worker exports at a time (determined by round-robin rotation), each of the N workers
exports after a total duration of N × export_window. Consequently, with more workers,
each remains active longer before exporting, necessitating larger hashmaps and increas-

52 cruise control : dynamic model selection for ml-based network traffic analysis

Workers Parallel
Throughput [Mcps]

0.5 1.0 1.5 2.0 2.5 3.0 4.0 6.0 8.0

1 0.00 0.00 0.79 23.87 30.39 40.13 55.73 70.48 77.62

2 0.00 0.00 0.00 0.00 0.00 2.90 23.66 56.50 67.24

4 0.00 0.00 0.00 0.00 0.00 5.64 17.50 26.74 29.45*

8 0.00 0.00 0.00 0.00 0.00 0.00 1.21 0.00* 5.88*

Table 4.5: Median packet loss (%) evaluation on multi-core during 10 minutes experiment.
*Memory exhausted

ing the load on the worker-to-post-processor channel. Neglecting this consideration
leads to rapid memory exhaustion, while excessive switching increases overhead costs.

4.5.4 Multitask Support

While extracting features for a single ML task demonstrates our system’s basic capabili-
ties, Cruise Control is designed to support feature extraction for multiple concurrent
tasks. In this experiment, we demonstrate this capability by running both use cases in
parallel on the first 10 minutes of the previously used CAIDA trace. In the following,
UC1 stands for video quality inference and UC2 for service recognition. Our objec-
tives are twofold: to show that the system maintains high model accuracy and low
packet loss while supporting multiple tasks, and to establish that AIMD is the most
appropriate control algorithm for this scenario. We accomplish this by conducting four
experiments comparing AIMD against an Additive Increase/Additive Decrease (AIAD)
approach that decrement by one mi when drop occurs, unlike AIMD’s multiplicative
decrease. Note that, although the algorithm supports task-specific mon_window values
as described in Section 4.3, we apply the same value to both tasks based on our finding
that this configuration delivers optimal performance for both use cases (detailed in the
following section).

Table 4.6 shows a summary of the experiment for the four combinations. We observe
that using AIAD tends to increase overall accuracy but also results in a higher packet
drop rate. Both outcomes can be explained by AIAD’s slower reaction to packet drops,
causing longer periods of packet loss but smaller decreases in overall performance.
The (AIMD, AIAD) combination achieves higher accuracy with only a limited packet
drop penalty. This is probably because UC2’s Pareto front includes only three models,
making each step more impactful. As a result, AIAD appears sufficient. Nevertheless,
the (AIMD, AIMD) combination demonstrates the most favorable results in minimizing
packet drops.

To better understand the reasons behind these results, we plot in Figure 4.8a and
4.8b the two opposite scenarios, i. e., using AIAD in both versus using AIMD in both.

4.5 evaluation 53

0 100 200 300 400 500 600
Time(s)

m1

m2

m3

m4

m5

m6

m7

m8

m9

Vi
de

o
Qu

al
ity

 In
fe

re
nc

e
 M

od
el

s

m1

m2

m3 Service Identification
 M

odels

(a) (AIAD,AIAD)

0 100 200 300 400 500 600
Time(s)

m1

m2

m3

m4

m5

m6

m7

m8

m9

Vi
de

o
Qu

al
ity

 In
fe

re
nc

e
 M

od
el

s

m1

m2

m3 Service Identification
 M

odels

(b) (AIMD,AIMD)

Figure 4.8: Service recognition features extraction across three different network load

UC1 UC2 Acc UC1 Acc UC2 Total Drop (%)

AIAD AIAD 0.932 0.824 0.0263

AIMD 0.932 0.824 0.0251

AIMD AIAD 0.931 0.970 0.0089

AIMD 0.926 0.970 0.0082

Table 4.6: Median Accuracy and Total Drop(%) of different combinations of control algorithms

The blue line represent the selected configuration for UC1 while the red line the config-
uration selected for the UC2. We add AIAD to the AIMD to test multiple combinations.
We observe that (AIAD, AIAD) results in weaker synchronization between the two
tasks, with UC1 leveraging its broader set of models on the Pareto front to benefit from
this imbalance. In contrast, (AIMD, AIMD) shows a more regular sawtooth pattern,
where both tasks synchronize more effectively.

Overall, these results confirm the choice of AIMD as the more effective control
algorithm for exploration to limit the packet loss, even complex scenarios such as
multitasking.

54 cruise control : dynamic model selection for ml-based network traffic analysis

4.5.5 Sensitivity to Parameters

Finally, we evaluate how the mon_window parameter impacts system performance.
This key parameter controls how quickly Cruise Control switches to more complex
configurations when no packet loss is detected, serving as a performance tuning lever
that operators can adjust based on specific deployment goals (e. g., maximizing accuracy
or minimizing packet loss). We conduct ten experiments using the 1-hour CAIDA traffic
trace. Table 4.7 summarizes the packet loss percentages and median accuracy results
across various mon_window values. Both metrics decrease with increasing mon_window
as the system remains longer on each model/feature set before switching. For this
particular use case and trace, an eight-second mon_window provides the optimal balance
between accuracy and packet loss. Similar experiments with our second use case show
consistent behavior—both accuracy and packet loss decrease with larger mon_window
values. The optimal value remains eight seconds (yielding 0.147% packet loss and 0.97

accuracy). We recommend conducting comparable experiments for any use case to
determine the optimal mon_window value according to specific operator requirements.

mon_window 1 2 4 8 10

Packet loss (%) 0.107 0.074 0.048 0.033 0.031

Accuracy 0.932 0.931 0.931 0.931 0.926

Table 4.7: Impact of mon_window on Cruise Control

4.6 Related work

Many studies have investigated similar individual subcomponents integral to Cruise

Control. Here we examine the related work and discuss key differences with Cruise

Control’s design.

system for extracting features from network traffic . Network feature
extraction has been a dynamic research area for decades, with systems designed
to derive meaningful insights from traffic. Recent advancements focus on high-speed
network traffic processing. For example, PacketMill [42] optimizes software for 100Gb/s
throughput, Enso [112] introduces a streaming abstraction for improved efficiency, and
Retina [134] uses multilayered filtering and streamlined feature extraction for relevant
network flows. However, these solutions rely on static configurations that can lead
to suboptimal performance under changing network conditions. In contrast, Cruise
Control introduces a dynamic configuration framework that adapts to varying network
loads in real time, offering a more flexible approach.

4.7 conclusion 55

cost-aware ml model creation. Neglecting system constraints during model
training can significantly impact inference time, causing packet loss that affects ML
model performance. To address this, Traffic Refinery [15] proposes a methodology
to explore and mitigate data representation technical debt, but it requires manual
intervention. In contrast, CATO [135] performs automated, end-to-end optimization
of the traffic analysis pipeline, but it’s offline and requires model selection online.
Liu et al. [81] underscore the impact of inter-packet time on the feature extraction
process, proposing an approach using three parallel models with varying packet
requirements. However, they solely focus ib early application identification and using
static models. Other work explores in-network inference within programmable devices
such as switches [5, 102, 139] or Field-Programmable Gate Array (FPGA)s [39, 133] to
exploit high-speed processing capabilities. However, these approaches face limitations
due to restricted command and extraction capabilities of in-network fabric, constraining
model features and sophistication.

dynamic model selection. Few studies explore dynamic model selection for
traffic analysis. pForest [17] dynamically switches between multiple ML models based
on flow packet count, while Jiang et al. [68] investigate selecting from classifiers with
varying feature requirements to balance classification speed and memory consumption,
focusing primarily on memory usage costs. In contrast, Cruise Control emphasizes
CPU cycles and tailors model selection to optimize computational performance. Vicenzi
et al. [133] propose an adaptive framework that switches between pruned Convolutional
Neural Networks (CNN) variants based on accuracy and throughput. They use a
fixed set of features. Our approach, on the other hand, adapts the feature set itself.
Additionally, their system focus on FPGAs, while ours targets commodity hardware.
Beyond traffic analysis, adaptive model selection has been explored in general ML
serving systems. Clipper [25] and INFaaS [109] dynamically optimize model selection
based on performance requirements. Zhang et al. [144] pioneered dynamic model
serving based on load and pre-characterized performance, inspiring recent studies[66,
113] on machine learning as a service. These works focus on avoiding service-level
objective violations with financial penalties, whereas Cruise Control focuses on system-
level computational costs for processing features for network traffic analysis.

4.7 Conclusion

In this chapter, we introduce Cruise Control, a system that dynamically selects target
ML models for traffic analysis tasks at runtime, without requiring user intervention.
Cruise Control leverages lightweight signals to adapt to changing network conditions
and the system’s available resources. We detail the design of Cruise Control and
evaluate it across two use cases, demonstrating its advantages under varying traffic
configurations.

56 cruise control : dynamic model selection for ml-based network traffic analysis

Cruise Control opens several promising directions for future research. One avenue is
improving model cost estimation by incorporating additional performance and resource
metrics. Another is identifying new system-level metrics to enable finer-grained model
selection and improve performance.

In the next chapter, we will see how we can leverage ML to reduce the quantity of
flows as an input of a system such as Cruise Control.

5
L O - F I : L O W- C O S T E A R LY A P P L I C AT I O N F I LT E R B A S E D O N
C A C H E D M L D E C I S I O N S

This chapter introduces Lo-Fi, a hybrid early application filter that aims to combine
the strengths of traditional filtering techniques and ML-based approaches. Lo-Fi cuts
packet loss from 38.33% (ML-only) to 1.17% on CAIDA traces. However, this comes
with moderate overhead, peaking at 6.38% of campus network traffic.

5.1 Introduction

Modern traffic analysis pipelines are tasked with extracting diverse information from
network flows to support critical operational functions including network telemetry [68,
81, 134, 135], QoE assessment [67, 86, 117], and intrusion detection [54, 74, 80, 145].
However, as traffic volumes increase (often tens to hundreds of gigabits per second [65,
81]) and the complexity of these analysis tasks grows, it becomes paramount to filter
out irrelevant traffic to maintain system efficiency and analysis accuracy. In this context,
a filter is a stateful mechanism that selectively admits or rejects network flows based
on predetermined criteria related to their originating applications, operating as a gate-
keeper within traffic analysis pipelines. However, despite this fundamental importance,
modern traffic analysis solutions have largely neglected the development of robust
application-aware filtering mechanisms, an oversight that is particularly problematic
as contemporary networks carry increasingly complex and encrypted traffic, making
accurate filtering an even more fundamental component of traffic analysis.

Over time, filtering techniques have evolved from pattern-matching methods to
learning-based approaches [68, 81, 135]. Traditional static filters rely on header informa-
tion such as port numbers or IP addresses, allowing for high-speed, low-overhead
processing. However, these filters can be brittle as modern services operate over
HTTPS [45] and frequently change IP assignments through CDNs [52]. Dynamic
filtering approaches leverage DNS queries and TLS metadata, such as inspecting the
SNI during TLS handshakes [118, 119], to identify applications. However, pervasive
encryption undermines DPI [16, 96], while the ongoing adoption of ECH [62] threat-
ens to eliminate remaining plaintext indicators, underscoring the unsustainability of
approaches that depend on plaintext protocol information.

In response, ML and Deep Learning (DL) models have emerged as powerful alterna-
tives, demonstrating remarkable ability to classify encrypted traffic by analyzing statis-
tical properties like packet sizes and timings [80, 117, 135], or raw packet headers [58,
81]. However, applying these approaches to every flow in real time in a high-speed

57

58 lo-fi : low-cost early application filter based on cached ml decisions

network context introduces significant computational overhead [65, 68, 81, 135, 145].
Our findings show that ML-only approaches can lead to packet loss rates as high as
38.33% on representative network traces due to processing bottlenecks. Furthermore,
many academic ML solutions are developed in offline environments [58, 80, 104], often
lacking the optimizations and practical considerations needed for real-world, line-rate
deployment.

The limitations of existing methods—the inflexibility and diminishing visibility of
traditional techniques, and the prohibitive cost of universal ML deployment—motivate
the need for a new strategy. Our work introduces Lo-Fi, a hybrid application filter
designed to effectively navigate the trade-off between the efficiency of traditional
filtering and the accuracy of ML based classification. Lo-Fi’s core design combines
the low overhead of pattern-matching approaches with the flexibility of ML-based
approaches, operating on the principle of judicious ML utilization. Central to its
architecture is a fast “short-circuit” path that processes the bulk of recognized flows
relying on cached, ML dynamically updated lists of IP destinations.

This pattern-matching is highly efficient, demonstrating significantly lower processing
times compared to direct ML inference or even traditional TLS SNI inspection. The
more resource-intensive ML pipeline is selectively invoked only for unclassified flows,
serving both to classify this unrecognized traffic and to continually enrich the decision
cache. To manage the cache effectively, particularly in the context of CDNs and dynamic
IP reassignments, Lo-Fi incorporates mechanisms such as Least Recently Used (LRU)
eviction, time-based expiration of entries, and thread-safe inter-core sharing for its
IP cache. This architecture allows Lo-Fi to achieve substantial performance gains; for
instance, on CAIDA traces, its short-circuit reduced packet loss from 38.33% (in an
ML-only configuration) to just 1.17%.

5.2 Related Work

In this section, we discuss different approaches in the field of traffic filters, focusing
on accuracy and efficiency tradeoffs. We show that existing solutions either rely on
outdated techniques or are not designed to be used in modern networking environ-
ments, justifying the need for a new approach. We provide a comparison of filtering
techniques in Table 5.1.

static filters . Traditional pattern-matching filter techniques that rely on heuris-
tics such as port numbers or IP addresses are computationally efficient (i. e., capable of
line-rate performance) but are increasingly inadequate for precise application identifi-
cation. One primary reason is that the rules underpinning these heuristics—specific
ports, static IP lists, or predefined signatures—are often ill-equipped for the dynamic
nature of modern internet services. For instance, attempting to identify a specific
streaming service by its port number becomes futile when most services utilize the

5.2 related work 59

generic HTTPS port (443). Similarly, relying on static IP address lists offers limited
utility. The widespread adoption of CDNs and cloud services means that a single IP
address can host numerous applications [52], and these IP assignments can change
frequently without notice, rendering static IP-based rules quickly obsolete. For example,
Luxemburk et al. [82] compare two ML approaches to an IP-based classification over
QUIC traffic. Their results underscore the failure of IP filtering over time, with accuracy
dropping from 100% to 0% within weeks. Our findings confirm this trend, underscoring
the need to constantly update IP lists due to the dynamic nature of today’s Internet.

Further, the increasing obfuscation of distinguishing information due to pervasive
encryption and the adoption of more secure protocols significantly curtails the effec-
tiveness of these traditional methods. While DPI was once a robust method for under-
standing plaintext traffic [16], its efficacy is fundamentally undermined by widespread
network data encryption [96].

Trevisan et al. [130] investigated the possibility of performing classification based
solely on domain names and their associated IP addresses. Their results show that
up to 55% of web traffic could be identified by relying solely on domains. However,
they also observed that IP addresses are not stable over time. Their monthly analysis
reveals that IP addresses frequently change, posing challenges for consistent classifi-
cation. Furthermore, they advocate for IP-based classification as a privacy-preserving
alternative. Our work takes a similar approach, focusing on IP-based classification.
However, we overcome the limitations of their method by introducing a mechanism
that can dynamically classify unknown network flows.

dynamic filters . Static filters often lack the adaptability needed to function
effectively in modern network environments, which are dominated by CDNs that
commonly share IP addresses across multiple services. To overcome this challenge,
many filtering systems now use dynamic information to more accurately track and
identify relevant IP addresses.

In their work Maghsoudlou et al. [85] try to identify services in realtime by inspecting
DNS answer records and associating them with NetFlow records. While the findings
were positive, this approach is nullified by the increasing use of DNS over encrypted
transport [32, 56, 59, 63]. In contrast, we focus solely on available information, such as
IP destination, and use an ML approach to reason about encrypted information.

TLS SNI-based filtering was investigated by Shbair et al. [119], who examined filtering
methods relying on the TLS SNI extension and highlighted two key weaknesses. In
their work, they described a firewall-based filtering method where connections to
unauthorized servers are reset to block access. They also developed a tool to bypass
this type of filtering. In a subsequent study, Shbair et al. [118] proposed a new approach
that combines TLS SNI monitoring with DNS-based verification. To counter forged
SNI values, they required the firewall to resolve the domain via a trusted DNS and
compare the resulting IP address with the actual destination IP, ensuring consistency.

60 lo-fi : low-cost early application filter based on cached ml decisions

Filter techniques Low latency Dynamic Payload encryption ECH DNS encryption

Pattern-matching (IP, Port...) ✓ ✓ ✓ ✓

DPI ✓ ✓ ✓

DNS ✓ ✓ ✓ ✓

TLS SNI ✓ ✓ ✓

ML ✓ ✓ ✓ ✓

Lo-Fi ✓ ✓ ✓ ✓ ✓

Table 5.1: Comparison of existing filtering and their limitations

These works highlight that TLS SNI had several known weaknesses even before the
introduction of ECH, reinforcing the need for alternative solutions.

ml-based filters . ML-based filters are a promising solution for overcoming many
of the challenges encountered in network service identification [12]. These filters are
particularly effective when dealing with encrypted traffic and are resilient to emerging
techniques, such as ECH and DNS encryption. For instance, Bernail et al. [10] explored
early application identification based on clustering methods. More recently, with the
widespread adoption of encryption, ML-based approaches proved to be useable [101].
In their work, Shbair et al. [120] applied ML methods for early service identification
over HTTPS. Babaria et al. [8] introduce FastFlow a flow classifier that use time-series
on minimal quantities of packets. Liu et al. [81] introduce ServeFlow a Fast-Slow
architecture, which performs service classification utilizing early flow characteristics.
However, these solutions are limited in their use for filtering large quantities of flows
in real time. Designed for efficient traffic classification, ServeFlow requires a dedicated
16-core machine to classify less than 10 Gbps of network traffic. Meanwhile, FastFlow
uses eight cores dedicated to classifying 50,000 concurrent flows. Furthermore, they
proposes using Graphical Processing Unit (GPU)s to improve classifier performance.
However, in our work, we attempt to restrict Lo-Fi to a few cores.

Although there has been extensive research on improving the accuracy of network
service identification, only few studies consider the constraints imposed by system and
network resources. One line of research focuses on feature engineering and selecting
the optimal features [15, 68, 135]. However, existing inference methods depend on
statistical features from multiple packets, which can cause latency, and still require
processing of all flows through ML inference which results taxing for a traffic analysis
system. We show in Section 5.4 ML-only configurations incur in 38.33% packet loss
when processing common traffic loads. Our work differs in that we look to use ML
selectively (i. e., only when necessary), with the goal of maximizing system efficiency.

hybrid filters . The presented limitations demonstrate the need for a new ap-
proach to traffic filtering, aiming to strike the right tradeoff between processing effi-

5.3 lo-fi 61

ciency of static filters with the accuracy of ML-models. However, as far as we know, the
most closely related work is SnortML, the detection engine that was introduced in Snort,
the well-known open-source Intrusion Detection System (IDS), version 3.1.82.0 [108].
SnortML uses ML binary classifier to detect zero-day exploits and trigger alerts. As an
IDS/Intrusion Prevention System (IPS), Snort can use an access control engine to block
or permit network traffic in reaction to alerts, though this is not mandatory. Our ap-
proach is similar in that we also use binary classifiers to accept or reject traffic. However,
our system differs significantly in that we aim to build an application filter based on
service identification, whereas SnortML is built to detect zero-day exploits. Further, we
support all models that support the Open Neural Network Exchange (ONNX) format,
while SnortML is limited to TensorFlow. Finally, to the best of our knowledge, Snort3
does not explicitly aim to minimize the use of ML to enhance performance, unlike
Lo-Fi, which does so by design. We present Lo-Fi in the next Section.

5.3 Lo-Fi

In this section, we present Lo-Fi, a proof of a concept application filter that leverages
the speed of pattern-matching rules and the versatility of ML classification. We begin
by presenting metrics and concept underlying Lo-Fi. Next, we describe the various
steps a packet can take through the system. Finally, we discuss how the system uses
ML decisions to improve performance.

5.3.1 Low-cost early application filter

In this section, we first present the key metrics used by Lo-Fi to achieve early service
identification. Then, we detail how ML models are employed as a fallback mechanism
when these metrics alone are insufficient. Lastly, we discuss the model-agnostic ar-
chitecture of Lo-Fi and the deployment considerations for integrating various ML
models.

early indentification. We rely on two distinct set of metrics to enable early
and low-cost service identification. The first set of metrics is used to determine whether
a packet belongs to a previously seen flow. To this end, we use a flow cache to store
accepted and rejected flows. These flows are indexed by the five-tuple, which includes
the source and destination IP addresses, the source and destination ports, and the
transport protocol. The second set of metrics supports service detection. Here, we
maintain a cache of destination IP addresses that have been associated with the targeted
service. By comparing new flows against this cache, we can infer the likely service
destination. If either condition is met, we can accept the flow early without performing
more costly analyses.

62 lo-fi : low-cost early application filter based on cached ml decisions

identifying services . Although the cache is essential for quickly identifying
services, it must be continuously updated with reliable information to maintain its
accuracy. Due to the dynamic nature of IP assignments, especially in environments
involving CDNs [52], manually updating the cache is impractical and error-prone. To
address this issue, Lo-Fi leverages ML classification to supplement the cache. When
packet-level metrics and existing cached data are insufficient for identifying services,
ML inference is used to classify flows and update the cache with new IP. This process
ensures that the cache adapts to changes in network and follows IP assignments.
Additionally, a time-based expiration mechanism removes outdated entries to prevent
inaccurate classification due to outdated data. By applying ML parsimoniously, only
when simpler methods fail, Lo-Fi maintains efficiency without sacrificing accuracy.

model agnostic . Due to the rapid evolution of ML, systems tied to a single model
architecture may become obsolete before they are even deployed. Moreover, many
models remain as research prototypes, overlooking the practical challenges encountered
during real-world deployment. This results in models that show high accuracy in
controlled settings but underperform in live environments [7]. To address this issue,
Lo-Fi is designed to facilitate the seamless deployment and evaluation of off-the-shelf
ML models within real-world network environments. Serving as a flexible testbed
for models, Lo-Fi is designed to be model-agnostic, allowing network operators and
researchers to test diverse models and compare them under realistic conditions with
minimal integration effort.

To ensure compatibility and interoperability across models and frameworks, we
enforce three key constraints:

1. ONNX. ONNX runtime[30] is a framework that supports a wide variety of ma-
chine learning libraries. By adopting ONNX, Lo-Fi becomes agnostic to the
training framework. This allows developers to use their preferred tools (Such as
TensorFlow[31], PyTorch[64], Scikit Learn[77]) while ensuring consistent deploy-
ment. ONNX serves as a standardized, plug-and-play interface between trained
models and the system, thus simplifying integration and execution.

2. Binary Classification. Each model must perform binary classification over net-
work flows, producing a decision interpreted as accepted or refused. This ab-
straction enables uniform handling of inference results across different model
architectures. Multi-class classification could probably be used, too, but we will
save that exploration for future work.

3. Subscription. Models must specify the type of flow data they require, referred
to as a Subscription, as well as the number of packets needed for inference (see
the next paragraph for details). These specifications ensure that the system can
accurately match each model’s requirements and maintain compatibility across
different models.

5.3 lo-fi 63

By respecting to these constraints, Lo-Fi can seamlessly integrate a wide variety of
ML models, supporting reproducible benchmarking and operational testing at scale.

subscription. In Lo-Fi, a Subscription defines the specific type of input data
that the system can provide to a ML model. Each subscription represents a set of
features derived from network flows, enabling the system to tailor the data collection
and processing pipeline according to the needs of the model.

In the proof of concept, Lo-Fi natively provide three different Subscriptions:

• Stats. A feature set based on coarse statistical features, inspired by the work of
Fauvel et al. [43]. This represent the direction and the size of the packets of a flow.

• Raw. A byte-level representation of packets, where each packet is encoded as a
fixed-length array of 1518 uint8 values. Each value corresponds to a byte from
the original packet. Raw features are oftenly use by Deep Learning-oriented
models[116].

• NPrint.[58]. A generic representation of packet data, designed for ML-based
network traffic analysis. In this representation, every bit of the header is either
represented by its value as 0 or 1, or is absence as -1, according to a set of
protocol statics for each flow. In our implementation, we natively extract Nprint
for IPv4/TCP/UDP, with each protocol including all its options.

extensibilility. However, Lo-Fi is designed to be extensible. New types of Sub-
scriptions can be implemented, they only need to implement the dynamic Subscription
trait. This trait enables the system to handle arbitrary feature extraction mechanisms
uniformly. All Subscription implementations must define five core functions to create,
add packets, process features, and get metadata such as the number of packets and the
number of features. Once the number of packets required by the model is reached, the
corresponding feature set is exported in tensor format1, dimensioned by the number of
features and the number of packets. Then it is forward to the ML model for inference,
after this inference the decision and the flow is transfer to the next step.

5.3.2 System Workflow

The system is built in a three key steps, illustrated in Figure 5.1.
First, pattern-matching attempts to leverage previously cached ML decisions that

can be applied to new incoming packets, aiming to avoid invoking ML whenever
possible. If no cached decision matches the incoming packet, the system falls back
to ML classification. Although Lo-Fi tries to minimize ML usage for efficiency, ML
remains the core mechanism for handling uncertain or novel flows. Unlike traditional

1 Multidimensionnal array used by ML models

64 lo-fi : low-cost early application filter based on cached ml decisions

Traffic Model
Inference

Process
Decision Drop or Accept

Caches
Read

Short-Circuit

Populate

Pattern
Matching

Control PathData Path

Figure 5.1: Diagram of Lo-Fi

filters, which often ignore unmatched packets [91], Lo-Fi redirects these packets to
the ML module, which is designed to classify unknown traffic, including encrypted
flows by analyzing statistical features [122]. To this end, packets are gathered in a
dedicated cache and sorted by flow. This allows the system to gather sufficient context
for analysis, as ML models typically rely on features extracted from multiple packets
rather than individual ones[15, 135]. Once there are enough packets to meet the model’s
requirements, features are extracted and sent to the ML model for inference. The model
then performs a binary classification to determine the relevance of the flow. Finally, the
Process Decision component applies the classification outcome to the flow and updates
the caches accordingly. This step extracts all available knowledge from the decision
and stores it in the correct cache. This enables Lo-Fi to judiciously leverage ML while
capitalizing on previous decisions to reduce unnecessary computational costs.

5.3.3 Capitalize on past decisions

The cornerstone of Lo-Fi’s performance is the parsimonious use of ML, preferring to
capitalize on stored past decisions. In this section, we will see how the system populates
these caches based on the filter outcome and how it manages them.

cache population Actions realized by the Process Decision component is highly
related on the decision took by the filter. We will see here the different cases, and how
it handles them.

Firstly, when a flow is identified by the ML model as irrelevant, the system record
the 5-tuple in the Flow cache as a refused flow and drop it. Conversely, when the ML
model identifies a flow as relevant, the system records the five-tuple in the flow cache
as an accepted flow and adds the destination IP address to the IP cache. If the incoming
flow has matches an entry of the IP cache, we jump directly to adding the five-tuple to
the flow cache as accepted. Lastly, to prevent cache pollution and eliminate orphaned
entries, the system purges related entries from various caches.

5.4 evaluation 65

cache management As described above, Lo-Fi maintains several caches through-
out its decision pipeline to efficiently store and reuse knowledge. Without proper
management, the caching mechanism may exhaust available memory under high traffic
loads, potentially resulting in packet loss or even system crashes. To address this issue,
we opted for a cache, which is bounded by a maximum size by design, rather than
a resizable HashMap. Each cache has a fixed maximum number of entries and uses
a predefined eviction policy when it reaches its maximum capacity. We use the LRU
policy, which discards the entries that have been accessed least recently. This approach
effectively removes inactive or outdated flows, including unfinished connections, which
are a common occurrence in real-world traffic due to widespread TCP SYN scanning
[35, 36] and incomplete handshakes [71].

Finally, since the caches are shared across multiple CPU cores, they must be im-
plemented as thread-safe structures in order to support concurrent access without
compromising accuracy or performance. This intercore sharing depends from how
network flows are distributed across cores. Many high-performance networking stacks
employ consistent hashing mechanisms (e.g., based on packet five-tuples) to ensure
that packets belonging to the same connection are routed to the same processing core.
This behavior is sufficient to maintain consistency in the flow level caches, as all packets
of a given flow are handled by a single core.

However, the IP cache presents a more complex scenario. Two distinct flows with the
same destination IP address may be processed by different cores. In such cases, one
core may have cached a trusted IP, while another core, unaware of this, unnecessarily
invokes the ML pipeline. To prevent this inefficiency, the IP cache is implemented
as a shared structure accessible across all cores. Maintaining a globally accessible,
thread-safe IP cache ensures that knowledge about known IP is leveraged system-wide,
reducing redundant computation and improving overall throughput. Furthermore, the
IP cache uses a time-based eviction policy to remove outdated information. This helps
prevent inaccurate classifications caused by outdated data(see Section 5.4.4).

5.4 Evaluation

We evaluate Lo-Fi on multiple scenarios using CAIDA traces[20], network traces from
a tap in our campus network2, and purely synthetic traffic for micro benchmarks. We
use the same testbed environment presented in Chapter 4.

2 This tap was configured in collaboration with our campus networking and security teams to obtain a copy
of network traffic.All captured traffic was anonymized to protect privacy and mitigate ethical concerns
related to data collection. Importantly, the study did not involve any analysis of individual user behavior;
our focus remained exclusively on the performance and characteristics of services.

66 lo-fi : low-cost early application filter based on cached ml decisions

0 100 200 300 400 500 600
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Pa

ck
et

s p
ro

ce
ss

ed

(M
pp

s)

0

20

40

60

80

100

Dr
op

(a) Applying ML to each connections

0 100 200 300 400 500 600
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pa
ck

et
s p

ro
ce

ss
ed

(M

pp
s)

0

20

40

60

80

100

Dr
op

(b) LoFi

Figure 5.2: Number of processed and dropped packets (in Mpps) over 10 minutes of CAIDA
traffic using 2 CPU cores

5.4.1 Prototype Implementation

The proof-of-concept prototype was developed in Rust to leverage its memory safety
and concurrency guarantees. During the development process, a particular effort was
made to design the filter as a library, which will be released as an open-source project
upon acceptation. This will enable operators and researchers to easily deploy various
models. We strongly encourage the community to adapt and customize the library
according to their needs. This could mean deploying and testing models using the
provided Subscription type, or implementing a new one.

We use the Moka[92] library to handle the caches presented in Section 5.3. Moka’s
strong performance guarantees come from its internal partitioning into multiple, in-
dependently locked segments. This locks only the relevant segment during access
or modification, enhancing concurrency. Multiple threads can operate on the cache
simultaneously without blocking each other.

The filter is designed to be agnostic to the underlying packet delivery mechanism.
For this proof of concept, we chose DPDK[29] due to its high performance and ability
to process packets with low latency and high throughput via kernel bypass. We
therefore encourage the use of DPDK when deploying the system to fully leverage its
performance capabilities.

5.4.2 Overall performances

To evaluate the overall performance of the system under realistic conditions, we present
an experiment, illustrated in figure 5.2, using the CAIDA trace from Equinix Chicago,
captured on 2016-01-21 [20]. The trace is used in its original form, with the only
modification being the merging of both traffic directions to ensure complete connections

5.4 evaluation 67

are preserved. We consider this trace to represent realistic traffic, as it originates directly
from an ISP network.

We first run Lo-Fi without the Pattern-matching component, which consists to run
the ML pipeline on each connection. This approaches try to replicate state-of-the-art
service classification [80, 104], where model are typically evaluate offline. Such non-
real-time analyses often process the entire traffic dataset without properly considering
system constraints or deployment limitations.

We ran it with two CPU cores for the first ten minutes and with the NPrint Subscrip-
tion for the first ten packets. Restricting the number of CPU cores is mandatory because
we expect to add more computation and not just filter traffic on the same server. As
Figure 5.2a shows, the system can not handle the load, which results in a lot of traffic
dropped. At the end of the ten minutes, 38.33% of the input traffic has been dropped.
Next, we run the same traffic with the Pattern-matching component. As Figure 5.2b
shows, we observe a brief warm-up period during which the system achieves nearly
zero packet loss with some spikes in loss. Spikes down in the traffic are naturally
present in the traces, likely caused by artifacts during capture or anonymization. These
irregularities allow us to observe how Lo-Fi behaves when faced with imperfect,
real-world traffic, providing insights into its practical performance. After ten minutes,
11% of connections were rejected, 31% were accepted, and 57% were still in the cache,
waiting for enough packets, resulting in only 1.17% packet loss.

This experiment demonstrates the efficiency benefits of Lo-Fi compared to state-of-
the-art approaches under realistic workloads.

5.4.3 ML performances

In the following section, we will break down the system to compare Lo-Fi to other
approaches.

cost estimation We first run micro benchmark performances of both Pattern-
matching and ML subscriptions. For this experiment we send dummy traffic generated
with T-Rex and manually aimed particular path within the system, illustrated in
Figure 5.3. To evaluate the Pattern-matching (in red), we generate packets targeting a
pre-cached IP address, enabling focused microbenchmarking of this specific system
component. To evaluate the ML’s subscriptions (in green, yellow, and cyan), we send
the required number of packets with a random five-tuple and remove them from the
cache after ML processing to avoid falling back on the Short-circuit path. Finally, to
establish a baseline and highlight its performance characteristics, we implemented TLS
SNI processing in purple. This shows that 4 packets are required because the Client
Hello is the fourth packet of the connection, though this fourth packet can be split into
multiple TCP packets, thus requiring more packets.

68 lo-fi : low-cost early application filter based on cached ml decisions

1 pkt ~4 pkt 5 pkt 10 pkt
packets required

0

10000

20000

30000

40000

50000

60000

70000

Pr
oc

es
sin

g
tim

e
(C

PU
 C

yc
le

s)

Pattern-matching
TLS SNI
ML: Nprint
ML: Stats
ML: Raw

Figure 5.3: Comparison of cost estimates (1st and 99th percentiles): ML Subscriptions vs. Short-
Circuit method (TLS SNI) as the baseline

To avoid skewing the results based on the performance of the models or the network,
we did not consider the inference time of the machine learning or the time between
packets, as these may vary according to use cases. This is motivated by the inherent
design of Lo-Fi and recent work showing the network latency is the higher and yet
incompressible cost in packet processing [81]. Thus, the evaluation focuses primarily
on the costs associated with Pattern-matching and Subscription types.

We measure processing time by recording the number of CPU cycles elapsed between
the first line of code representing the packet’s entry into the system and the last line
of code where the filter makes its decision. To do so, we read the TSC register via the
RDTSC instruction.This provides us a low-overhead method for estimating costs.

Figure 5.3 shows the median processing times and the 1st–99th percentile range for
each method. Pattern-matching is the best, with a median of 1,888 CPU cycles. Stats
Subscriptions are next, with similar medians for 5 and 10 packets (4,704 and 4,864 CPU
cycles), due to their computational simplicity, even lower than TLS SNI (6,816 CPU
cycles). Raw Subscriptions are more costly, increasing from 10,816 to 15,648 CPU cycles.
Nprint has the highest cost: 16,704 CPU cycles for 5 packets and 18,304 for 10. All
methods are right-skewed, with more variability in complex cases, motivating the use
of the median.

These results highlight the significantly lower cost of Pattern-matching compared
to both the ML path and TLS SNI. This emphasizes the importance of incorporating
a Pattern-matching in Lo-Fi, as it plays a critical role in improving overall system
performance.

5.4 evaluation 69

5.4.4 Short-Circuit performance

In this section, we focus on the performances of the Pattern-matching based on the
cached IP. As illustrated in Section 5.4.3, an IP-based filter is competitive in terms of
computational overhead. We will focus on the overhead in terms of flow noises induced
by using this coarse filter. We collected traces from a network tap for eight days and
extracted the available SNI and DNS records.

We removed the internal services and extracted the ten most used services. Next, we
added five other popular services that were not on the list: Threads, YouTube, Facebook,
Apple, and Netflix.

To emulate Lo-Fi, we identified IP destinations from target-labeled flows, then
extracted all flows to those IPs to measure overhead. This simulates a perfect case
where all the relevant IPs are already in cache, extracting flows without requiring new
inference.

The first column is the service we try to extract and its flows in % of the all flows of
the eight days. The Target column represents the quantity of flows that represent the
perfect score, where the filter extracts solely the flows where ground truth is known as
the targeted services.

In the left part of Table 5.2, we replicate our system behavior with an eviction
policy based on days. As expected, the system can extract all the required flow, but
also an extraneous quantity of flow. The overhead (Extraneous) can be understood as
the difference between the quantity of flow identified as the service (Target) and the
quantity of flows extracted (Extracted). Extraneous flow is then split into two categories:
the one Miss Classified (MC, in red) identified by SNI or DNS as another service than
the one targeted, and the unknown (UK, in blue) where no ground truth is available.
This last category can originate either from the target services or from others. Note
that, while this type of traffic is typically dropped by classical filters [91, 134], but our
approach retains it.

We can see that the overhead varies depending on the service. For example, YouTube
has 2.889% extraneous flows and 1.859% of its flows lack ground truth. Notably, only
0.264% of these extraneous flows are directed to non-YouTube domains, indicating
relatively accurate targeting despite some ambiguity. Other domains, like Hypotheses
(French research notebook in Humanities and Social Sciences), show a more moderate
split, with only 0.006% misclassified and 0.007% unknown. These cases highlight how
the scale and nature of a service can influence the precision of IP filtering.

With a maximum observed overhead of 6.534%, the results remain within accept-
able limits, especially considering the inherent limitations of IP filtering in today’s
CDN-driven networks. In comparison, services like Apple show a more noticeable
discrepancy, with a target volume of 0.515% and an extracted volume of 2.736%, sug-
gesting significant IP address sharing. These results confirm that IP filtering effectively
reduces overall traffic volume, despite inducing a moderate overhead.

70 lo-fi : low-cost early application filter based on cached ml decisions

Service Target (%)
Daily Hourly

Extracted(%)
Extraneous

MC / UK
Extracted(%)

Extraneous

MC / UK

google 1.547 6.534 0.264/4.724 4.868 0.196/3.126

icloud 0.332 1.352 0.039/0.980 0.950 0.022/0.597

office 0.434 1.324 0.480/0.410 0.850 0.209/0.207

hypotheses 0.169 0.182 0.006/0.007 0.171 0.001/0.001

gmail 0.119 0.327 0.036/0.172 0.166 0.003/0.043

microsoft 0.989 2.354 0.438/0.927 1.927 0.241/0.697

spotify 0.236 0.389 0.071/0.082 0.320 0.040/0.045

hubiconnect 0.166 0.169 0.000/0.003 0.167 0.000/0.000

github 0.189 0.231 0.008/0.034 0.199 0.002/0.008

adobe 0.077 0.507 0.259/0.171 0.240 0.084/0.078

threads 0.013 0.056 0.003/0.039 0.014 0.000/0.000

youtube 0.072 2.961 1.030/1.859 1.465 0.472/0.922

facebook 0.073 0.652 0.055/0.523 0.549 0.049/0.427

apple 0.515 2.736 0.972/1.249 1.384 0.452/0.417

nflx 0.015 0.045 0.002/0.028 0.016 0.000/0.001

Table 5.2: The percentage (rounded) of the targeted flow comparison of the extracted flow and
a breakdown of the extraneous flow split into two categories: misclassified (MC) and

unknown (UK).

Table 5.2 examines noise reduction and applies an hourly IP cache eviction policy,
which results in a significant drop in all extracted volumes. In particular, services like
HubiConnect and Netflix see extracted flows drop to nearly 0%. For others—such
as Gmail, Adobe, YouTube, and Apple—the overhead is reduced by half. Although
the reduction is less significant for some services, measurable gains are still observed.
Shortening the IP cache expiration time highlights the necessity of time-based eviction
to reduce noise and confirms that frequent invalidation is an effective tuning strategy.

5.5 Conclusion

In this chapter, we introduce Lo-Fi, a low-cost application filter based on an IP filter
enhanced by ML models to leverage the best of both worlds. Through several examples,
we showed that the coarse granularity of the IP filter is offset by its efficiency, making
an ideal fit to a more complex method. Severals keys problems remains, such as
the low-cost discrimination of services behind CDNs, the enhancement of filtering
with multiclass or ensemble classifiers, and the exploration of hardware-based rule
deployment for further performance gains.

6
C O N C L U S I O N S

This thesis explores the limitations induced by deploying ML to a real-world operator
network. In what follows, we summarize the key contributions of this work and outline
several promising directions for future research.

6.1 Contributions

In this thesis, we have made several key contributions that advance the understanding
and deployment of ML in networking. First, we conducted a study on the impact of
packet losses during the feature extraction process, demonstrating how such losses can
significantly degrade the performance of ML models, an aspect often overlooked in
prior work. Building on these insights, we designed a novel system that addresses this
challenge by dynamically adapting its configuration to the current network and system
context, extrapolated from coarse but reliable low-level metrics. This approach provides
a lightweight yet robust mechanism to preserve model accuracy under adverse condi-
tions. Finally, we developed and deployed a system capable of deploying off-the-shelf
ML models at line rate for traffic filtering. This system shows that higher-speed traffic
analysis can be sustained by leveraging previously made decisions. Together, these
contributions participate in bridging the gap between on-paper ML model performance
and practical deployment in real-world, high-speed networking environments, thus
paving the way for more resilient, adaptive, and efficient ML-based network analysis.

6.2 Perspectives

6.2.1 Hardware optimization

While the present work relies on software-based mechanisms, dedicated hardware
solutions are expected to deliver substantial lower latency. Offloading computationally
intensive tasks, such as filtering, data preprocessing, or even flow preassembly, to
specialized hardware (e.g., FPGA or smartNIC) could significantly increase system
throughput, reduce latency and improve system stability. This path appears particularly
promising for achieving large-scale deployment in high-speed environments, although
it also introduces important trade-offs between hardware efficiency and software flexibil-
ity. A key open question concerns how tasks should be repartitioned between hardware
and software, depending on the capabilities and constraints of the hardware platform.
Achieving an optimal balance is unlikely to be straightforward, as demonstrated in this

71

72 conclusions

thesis, no single configuration remains universally optimal for network traffic analysis.
This naturally leads to the question of whether hardware itself could be reconfigured
on the fly, enabling the system to adapt dynamically to evolving traffic conditions [133].
Such runtime adaptability would represent a major step forward, but it raises new
research challenges related to reconfiguration latency, overhead, and stability. Exploring
these issues opens a promising direction for the co-design of adaptive hardware and
software pipelines in future high-speed network monitoring systems.

6.2.2 Network traffic prediction

This thesis focused on system-level metrics to enable timely detection and mitigation of
performance degradation. A natural extension is to evolve from reactive mechanisms to-
ward proactive strategies through network traffic prediction techniques. By anticipating
resource contention, traffic bursts, and the resulting packet losses before they occur, the
system could adapt in advance and substantially reduce disruptions. Integrating ML or
DL models for network traffic prediction [6] opens the possibility of building systems
that make decisions ahead of time, shifting from mitigation to true prevention. Such
a capability could redefine the resilience of high-speed network monitoring, enabling
pipelines that continuously adjust not only to present conditions but also to predicted
future states. As short-term fluctuations and sporadic bursts are difficult to forecast,
the next generation of resilient systems should integrate predictive models alongside
adaptive pipelines. This approach makes proactivity and reactivity complementary
rather than antinomic, enhancing system performance and minimizing losses through
their concurrent implementation.

6.2.3 ML-related metrics

In this work, we focus on the feature-extraction pipeline, treating it as a dynamic
subsystem that adapts its internal configuration (e.g., the selected features) in response
to system-level metrics. In contrast, the ML model remains fixed and outside the
adaptive loop. This separation allows us to study how an adaptive pipeline interacts
with a static model, highlighting the trade-offs between feature selection and network
conditions. An important extension of this study is the inclusion of ML-related metrics,
such as the end-to-end latency from packet ingress to the ML decision (commonly
referred to as Time To Decision (TTD) [68]). Incorporating these metrics introduces new
challenges. For example, how many packets should the system process before sending
them to these values will likely vary according to network speed, context, and computed
features. Allowing the system to explore both feature complexity and packet quantity
jointly would enable it to adapt more effectively to changing network conditions.
Introducing TTD handling would align the pipeline’s workload characteristics with
system capabilities, while retaining the strengths of Cruise Control.

6.2 perspectives 73

6.2.4 Closing the loop

In this thesis we intentionally left the interpretation of the ML output to the operator.
Future systems could close the loop by parsing ML decisions and directly back into the
network-control plane, allowing the system to automatically adjust network configu-
ration based on the model’s predictions. Such a system could, for instance, reallocate
resources after an ML-based classification or reroute traffic when a drop in QoE is
detected. Closing the loop in this way, combined with adaptive pipelines, would move
network monitoring toward full autonomy, giving rise to intelligent architectures capa-
ble of self-optimizing and maintaining performance with minimal human intervention.
However, such system capable to reprogram network component on the fly already
exist in different context [53]. This encouraging us to claim that such close loop can be
an interessing way to explore in the future.

B I B L I O G R A P H Y

[1] Mahmoud Abbasi et al. “Deep Learning for Network Traffic Monitoring and
Analysis (NTMA): A Survey.” In: Computer Communications 170 (2021), pp. 19–41.
issn: 0140-3664. doi: https://doi.org/10.1016/j.comcom.2021.01.021. url:
https://www.sciencedirect.com/science/article/pii/S0140366421000426

(cit. on pp. 11, 33).

[2] Ziawasch Abedjan et al. “Detecting data errors: where are we and what needs
to be done?” In: Proc. VLDB Endow. (2016) (cit. on p. 19).

[3] Zeeshan Ahmad et al. “Network intrusion detection system: A systematic study
of machine learning and deep learning approaches.” In: Transactions on Emerging
Telecommunications Technologies 32.1 (2021), e4150 (cit. on p. 31).

[4] Iman Akbari et al. “A Look Behind the Curtain: Traffic Classification in an
Increasingly Encrypted Web.” In: Proc. ACM Meas. Anal. Comput. Syst. 5.1 (Feb.
2021). doi: 10.1145/3447382. url: https://doi.org/10.1145/3447382 (cit. on
pp. 33, 45).

[5] Aristide Tanyi-Jong Akem et al. “Encrypted Traffic Classification at Line Rate
in Programmable Switches with Machine Learning.” In: NOMS 2024-2024 IEEE
Network Operations and Management Symposium. 2024 (cit. on p. 55).

[6] Ons Aouedi et al. “Deep learning on network traffic prediction: Recent advances,
analysis, and future directions.” In: ACM Computing Surveys 57.6 (2025), pp. 1–37

(cit. on p. 72).

[7] Daniel Arp et al. “Dos and Don’ts of Machine Learning in Computer Security.”
In: 31st USENIX Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 3971–3988. isbn: 978-1-939133-31-1. url: https:
//www.usenix.org/conference/usenixsecurity22/presentation/arp (cit. on
pp. 13, 18, 62).

[8] Rushi Jayeshkumar Babaria et al. “FastFlow: Early Yet Robust Network Flow
Classification using the Minimal Number of Time-Series Packets.” In: arXiv
preprint arXiv:2504.02174 (2025) (cit. on pp. 18, 19, 31, 32, 34, 36, 60).

[9] Tom Barbette et al. “RSS++: load and state-aware receive side scaling.” In:
Conference on Emerging Network Experiment and Technology (2019). doi: 10.1145/
3359989.3365412 (cit. on p. 51).

[10] Laurent Bernaille et al. “Early Application Identification.” In: International Confer-
ence on Emerging Networking Experiments and Technologies (CoNEXT). 2006 (cit. on
pp. 12, 31, 60).

75

https://doi.org/https://doi.org/10.1016/j.comcom.2021.01.021
https://www.sciencedirect.com/science/article/pii/S0140366421000426
https://doi.org/10.1145/3447382
https://doi.org/10.1145/3447382
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://doi.org/10.1145/3359989.3365412
https://doi.org/10.1145/3359989.3365412

76 bibliography

[11] Timm Böttger et al. “Open Connect Everywhere: A Glimpse at the Internet
Ecosystem through the Lens of the Netflix CDN.” In: SIGCOMM Comput. Com-
mun. Rev. 48.1 (Apr. 2018), pp. 28–34. issn: 0146-4833 (cit. on p. 10).

[12] Raouf Boutaba et al. “A comprehensive survey on machine learning for network-
ing: evolution, applications and research opportunities.” In: Journal of Internet
Services and Applications 9.1 (2018), pp. 1–99 (cit. on pp. 11, 31, 33, 60).

[13] Leo Breiman. “Random Forests.” In: Mach. Learn. (2001) (cit. on p. 22).

[14] Francesco Bronzino et al. “Inferring Streaming Video Quality from Encrypted
Traffic: Practical Models and Deployment Experience.” In: Proc. ACM Meas. Anal.
Comput. Syst. 3.3 (Dec. 2019) (cit. on pp. 12, 20–22, 28, 31, 33, 35, 36, 38, 45).

[15] Francesco Bronzino et al. “Traffic refinery: Cost-aware data representation for
machine learning on network traffic.” In: Proceedings of the ACM on Measurement
and Analysis of Computing Systems 5.3 (2021), pp. 1–24 (cit. on pp. 4, 18, 31, 32, 34,
38, 55, 60, 64).

[16] Tomasz Bujlow et al. “Independent comparison of popular DPI tools for traffic
classification.” In: Computer Networks 76 (2015), pp. 75–89 (cit. on pp. 57, 59).

[17] Coralie Busse-Grawitz et al. pForest: In-Network Inference with Random Forests.
2022. arXiv: 1909.05680 [cs.NI]. url: https://arxiv.org/abs/1909.05680
(cit. on p. 55).

[18] Qizhe Cai et al. “Understanding host network stack overheads.” In: Proceedings
of the 2021 ACM SIGCOMM 2021 Conference. SIGCOMM ’21. Virtual Event, USA:
Association for Computing Machinery, 2021, pp. 65–77. isbn: 9781450383837

(cit. on pp. 11, 17).

[19] Qizhe Cai et al. “Understanding host network stack overheads.” In: Proceedings
of the 2021 ACM SIGCOMM 2021 Conference. SIGCOMM ’21. Virtual Event, USA:
Association for Computing Machinery, 2021, pp. 65–77. isbn: 9781450383837. doi:
10.1145/3452296.3472888. url: https://doi.org/10.1145/3452296.3472888
(cit. on p. 44).

[20] CAIDA. CAIDA Anonymized Internet Traces 2016 Dataset. Access restricted to
approved researchers. 2016. url: https://www.caida.org/data/passive/
passive_2016_dataset.xml (cit. on pp. 35, 43, 46, 65, 66).

[21] Jonathan Cavitt et al. “Detecting cyber attacks with packet loss resilience for
power systems.” In: Sustainable Computing: Informatics and Systems (2022) (cit. on
p. 19).

[22] Danilo Cerović et al. “Fast Packet Processing: A Survey.” In: IEEE Communications
Surveys & Tutorials (2018) (cit. on p. 17).

https://arxiv.org/abs/1909.05680
https://arxiv.org/abs/1909.05680
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.caida.org/data/passive/passive_2016_dataset.xml

bibliography 77

[23] Tejalal Choudhary et al. “A comprehensive survey on model compression and
acceleration.” In: Artificial Intelligence Review 53.7 (Feb. 2020), pp. 5113–5155.
issn: 1573-7462. doi: 10.1007/s10462-020-09816-7. url: http://dx.doi.org/
10.1007/s10462-020-09816-7 (cit. on p. 13).

[24] Benoit Claise. Cisco systems netflow services export version 9. Tech. rep. 2004 (cit. on
p. 2).

[25] Daniel Crankshaw et al. Clipper: A Low-Latency Online Prediction Serving System.
2017. arXiv: 1612.03079 [cs.DC]. url: https://arxiv.org/abs/1612.03079
(cit. on p. 55).

[26] Eric S. Crawley et al. A Framework for QoS-based Routing in the Internet. RFC 2386.
Aug. 1998. doi: 10.17487/RFC2386. url: https://www.rfc-editor.org/info/
rfc2386 (cit. on p. 9).

[27] Alexander D’Amour et al. “Underspecification presents challenges for credibility
in modern machine learning.” In: J. Mach. Learn. Res. (2022) (cit. on pp. 4, 13, 18).

[28] Alberto Dainotti et al. “Issues and future directions in traffic classification.” In:
IEEE Network 26.1 (2012), pp. 35–40 (cit. on p. 8).

[29] Data Plane Development Kit. https://www.dpdk.org/. 2023 (cit. on pp. 14, 17, 44,
66).

[30] ONNX Runtime developers. ONNX Runtime. https://onnxruntime.ai/. Ver-
sion: 1.22.0. 2021 (cit. on p. 62).

[31] TensorFlow Developers. “TensorFlow.” In: Zenodo (2022) (cit. on p. 62).

[32] Sara Dickinson et al. Usage Profiles for DNS over TLS and DNS over DTLS. RFC
8310. Mar. 2018. doi: 10.17487/RFC8310. url: https://www.rfc-editor.org/
info/rfc8310 (cit. on pp. 1, 59).

[33] Giorgos Dimopoulos et al. “Measuring video QoE from encrypted traffic.” In:
Proceedings of the 2016 Internet Measurement Conference. 2016, pp. 513–526 (cit. on
p. 12).

[34] DNS Encryption Explained — blog.cloudflare.com. https://blog.cloudflare.com/
dns-encryption-explained/. [Accessed 12-08-2025] (cit. on p. 9).

[35] Zakir Durumeric et al. “{ZMap}: Fast internet-wide scanning and its security
applications.” In: 22nd USENIX Security Symposium (USENIX Security 13). 2013,
pp. 605–620 (cit. on p. 65).

[36] Zakir Durumeric et al. “Ten years of zmap.” In: Proceedings of the 2024 ACM on
Internet Measurement Conference. 2024, pp. 139–148 (cit. on p. 65).

[37] E. O. Elliott. “Estimates of error rates for codes on burst-noise channels.” In: The
Bell System Technical Journal (1963) (cit. on p. 23).

https://doi.org/10.1007/s10462-020-09816-7
http://dx.doi.org/10.1007/s10462-020-09816-7
http://dx.doi.org/10.1007/s10462-020-09816-7
https://arxiv.org/abs/1612.03079
https://arxiv.org/abs/1612.03079
https://doi.org/10.17487/RFC2386
https://www.rfc-editor.org/info/rfc2386
https://www.rfc-editor.org/info/rfc2386
https://onnxruntime.ai/
https://doi.org/10.17487/RFC8310
https://www.rfc-editor.org/info/rfc8310
https://www.rfc-editor.org/info/rfc8310
https://blog.cloudflare.com/dns-encryption-explained/
https://blog.cloudflare.com/dns-encryption-explained/

78 bibliography

[38] Reham T. Elmaghraby et al. “Encrypted network traffic classification based on
machine learning.” In: Ain Shams Engineering Journal (2024) (cit. on p. 20).

[39] Mohammed Elnawawy et al. “FPGA-Based Network Traffic Classification Using
Machine Learning.” In: IEEE Access 8 (2020), pp. 175637–175650. doi: 10.1109/
ACCESS.2020.3026831 (cit. on pp. 14, 55).

[40] Encrypted Client Hello: the future of ESNI in Firefox – Mozilla Security Blog —
blog.mozilla.org. https://blog.mozilla.org/security/2021/01/07/encrypted-
client-hello-the-future-of-esni-in-firefox/. [Accessed 12-08-2025] (cit.
on p. 9).

[41] Nick Erickson et al. AutoGluon-Tabular: Robust and Accurate AutoML for Structured
Data. 2020. arXiv: 2003.06505 (cit. on p. 22).

[42] Alireza Farshin et al. “PacketMill: toward per-Core 100-Gbps networking.”
In: Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS ’21. Virtual, USA:
Association for Computing Machinery, 2021, pp. 1–17. isbn: 9781450383172. doi:
10.1145/3445814.3446724. url: https://doi.org/10.1145/3445814.3446724
(cit. on p. 54).

[43] Kevin Fauvel et al. A Lightweight, Efficient and Explainable-by-Design Convolutional
Neural Network for Internet Traffic Classification. 2023. arXiv: 2202.05535 [cs.LG].
url: https://arxiv.org/abs/2202.05535 (cit. on p. 63).

[44] Anja Feldmann et al. “The Lockdown Effect: Implications of the COVID-19

Pandemic on Internet Traffic.” In: Proceedings of the ACM Internet Measurement
Conference. IMC ’20. ACM, Oct. 2020, pp. 1–18. doi: 10.1145/3419394.3423658.
url: http://dx.doi.org/10.1145/3419394.3423658 (cit. on p. 35).

[45] Adrienne Porter Felt et al. “Measuring {HTTPS} adoption on the web.” In: 26th
USENIX security symposium (USENIX security 17). 2017, pp. 1323–1338 (cit. on
p. 57).

[46] Michael Finsterbusch et al. “A Survey of Payload-Based Traffic Classification
Approaches.” In: IEEE Communications Surveys & Tutorials 16.2 (2014), pp. 1135–
1156 (cit. on p. 8).

[47] Daniele Foroni et al. “Estimating the extent of the effects of Data Quality through
Observations.” In: IEEE 37th International Conference on Data Engineering (ICDE).
2021 (cit. on p. 19).

[48] E. N. Gilbert. “Capacity of a burst-noise channel.” In: The Bell System Technical
Journal (1960) (cit. on p. 23).

[49] Youdi Gong et al. “A survey on dataset quality in machine learning.” In: Infor-
mation and Software Technology (2023) (cit. on p. 19).

https://doi.org/10.1109/ACCESS.2020.3026831
https://doi.org/10.1109/ACCESS.2020.3026831
https://blog.mozilla.org/security/2021/01/07/encrypted-client-hello-the-future-of-esni-in-firefox/
https://blog.mozilla.org/security/2021/01/07/encrypted-client-hello-the-future-of-esni-in-firefox/
https://arxiv.org/abs/2003.06505
https://doi.org/10.1145/3445814.3446724
https://doi.org/10.1145/3445814.3446724
https://arxiv.org/abs/2202.05535
https://arxiv.org/abs/2202.05535
https://doi.org/10.1145/3419394.3423658
http://dx.doi.org/10.1145/3419394.3423658

bibliography 79

[50] Google Transparency Report — transparencyreport.google.com. [Accessed 12-08-2025].
url: https://transparencyreport.google.com/https/overview?hl=en (cit. on
p. 11).

[51] Idio Guarino et al. “On the use of Machine Learning Approaches for the
Early Classification in Network Intrusion Detection.” In: 2022 IEEE Interna-
tional Symposium on Measurements & Networking (M&N). 2022, pp. 1–6. doi:
10.1109/MN55117.2022.9887775 (cit. on p. 12).

[52] Run Guo et al. “CDN Judo: Breaking the CDN DoS Protection with Itself.” In:
NDSS. 2020 (cit. on pp. 57, 59, 62).

[53] Arpit Gupta et al. “Sonata: Query-driven streaming network telemetry.” In:
Proceedings of the 2018 conference of the ACM special interest group on data communi-
cation. 2018, pp. 357–371 (cit. on p. 73).

[54] Ragini Gupta et al. “Generative active adaptation for drifting and imbalanced
network intrusion detection.” In: arXiv preprint arXiv:2503.03022 (2025) (cit. on
p. 57).

[55] Craig Gutterman et al. “Requet: Real-Time QoE Metric Detection for Encrypted
YouTube Traffic.” In: ACM Trans. Multimedia Comput. Commun. Appl. 16.2s (July
2020). issn: 1551-6857. doi: 10.1145/3394498. url: https://doi.org/10.1145/
3394498 (cit. on pp. 12, 33).

[56] Paul E. Hoffman et al. DNS Queries over HTTPS (DoH). RFC 8484. Oct. 2018. doi:
10.17487/RFC8484. url: https://www.rfc-editor.org/info/rfc8484 (cit. on
pp. 1, 9, 59).

[57] Høiland-Jørgensen et al. “The eXpress data path: fast programmable packet
processing in the operating system kernel.” In: Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies. CoNEXT ’18.
2018 (cit. on p. 17).

[58] Jordan Holland et al. “New Directions in Automated Traffic Analysis.” In:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’21. Virtual Event, Republic of Korea: Association for Computing
Machinery, 2021, pp. 3366–3383. isbn: 9781450384544. doi: 10.1145/3460120.
3484758. url: https://doi.org/10.1145/3460120.3484758 (cit. on pp. 13, 20,
22, 46, 57, 58, 63).

[59] Zi Hu et al. Specification for DNS over Transport Layer Security (TLS). RFC 7858.
May 2016. doi: 10.17487/RFC7858. url: https://www.rfc-editor.org/info/
rfc7858 (cit. on pp. 1, 9, 59).

[60] Johann Hugon et al. Cruise Control: Dynamic Model Selection for ML-Based Network
Traffic Analysis. 2024. arXiv: 2412.15146 [cs.NI] (cit. on p. 31).

https://transparencyreport.google.com/https/overview?hl=en
https://doi.org/10.1109/MN55117.2022.9887775
https://doi.org/10.1145/3394498
https://doi.org/10.1145/3394498
https://doi.org/10.1145/3394498
https://doi.org/10.17487/RFC8484
https://www.rfc-editor.org/info/rfc8484
https://doi.org/10.1145/3460120.3484758
https://doi.org/10.1145/3460120.3484758
https://doi.org/10.1145/3460120.3484758
https://doi.org/10.17487/RFC7858
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc7858
https://arxiv.org/abs/2412.15146

80 bibliography

[61] Johann Hugon et al. “The Cost of Packet Loss on ML-Based Traffic Analysis.” In:
2025 IEEE 31th International Symposium on Local and Metropolitan Area Networks
(LANMAN). 2025 (cit. on p. 17).

[62] Christian Huitema. Issues and Requirements for Server Name Identification (SNI)
Encryption in TLS. RFC 8744. July 2020. doi: 10.17487/RFC8744. url: https:
//www.rfc-editor.org/info/rfc8744 (cit. on pp. 1, 57).

[63] Christian Huitema et al. DNS over Dedicated QUIC Connections. RFC 9250. May
2022. doi: 10.17487/RFC9250. url: https://www.rfc- editor.org/info/
rfc9250 (cit. on pp. 1, 9, 59).

[64] Sagar Imambi et al. “PyTorch.” In: Programming with TensorFlow: solution for edge
computing applications (2021), pp. 87–104 (cit. on p. 62).

[65] Syed Usman Jafri et al. “Leo: Online {ML-based} Traffic Classification at {Multi-
Terabit} Line Rate.” In: 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24). 2024, pp. 1573–1591 (cit. on pp. 57, 58).

[66] Beomyeol Jeon et al. “A House United Within Itself: SLO-Awareness for On-
Premises Containerized ML Inference Clusters via Faro.” In: Proceedings of the
Twentieth European Conference on Computer Systems. EuroSys ’25. Rotterdam,
Netherlands: Association for Computing Machinery, 2025, pp. 524–540. isbn:
9798400711961. doi: 10.1145/3689031.3696071. url: https://doi.org/10.
1145/3689031.3696071 (cit. on p. 55).

[67] Junchen Jiang et al. “{CFA}: A practical prediction system for video {QoE}
optimization.” In: 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16). 2016, pp. 137–150 (cit. on p. 57).

[68] Xi Jiang et al. AC-DC: Adaptive Ensemble Classification for Network Traffic Identi-
fication. 2023. arXiv: 2302.11718 [cs.NI]. url: https://arxiv.org/abs/2302.
11718 (cit. on pp. 31, 32, 34, 41, 55, 57, 58, 60, 72).

[69] Stefan Schmid Jonas Köppeler Toke Høiland-Jørgensen. “mq-cake: Scaling soft-
ware rate limiting across CPU cores.” In: 2025 IEEE 31th International Symposium
on Local and Metropolitan Area Networks (LANMAN). 2025 (cit. on p. 14).

[70] Parikshit Juluri et al. “Measurement of Quality of Experience of Video-on-
Demand Services: A Survey.” In: IEEE Communications Surveys & Tutorials 18.1
(2016), pp. 401–418. doi: 10.1109/COMST.2015.2401424 (cit. on p. 9).

[71] Piotr Jurkiewicz et al. “Flow length and size distributions in campus Internet
traffic.” In: Computer Communications 167 (2021), pp. 15–30 (cit. on p. 65).

[72] Marios Evangelos Kanakis et al. “Machine Learning for Computer Systems and
Networking: A Survey.” In: ACM Comput. Surv. 55.4 (Nov. 2022). issn: 0360-0300.
doi: 10.1145/3523057. url: https://doi.org/10.1145/3523057 (cit. on p. 11).

https://doi.org/10.17487/RFC8744
https://www.rfc-editor.org/info/rfc8744
https://www.rfc-editor.org/info/rfc8744
https://doi.org/10.17487/RFC9250
https://www.rfc-editor.org/info/rfc9250
https://www.rfc-editor.org/info/rfc9250
https://doi.org/10.1145/3689031.3696071
https://doi.org/10.1145/3689031.3696071
https://doi.org/10.1145/3689031.3696071
https://arxiv.org/abs/2302.11718
https://arxiv.org/abs/2302.11718
https://arxiv.org/abs/2302.11718
https://doi.org/10.1109/COMST.2015.2401424
https://doi.org/10.1145/3523057
https://doi.org/10.1145/3523057

bibliography 81

[73] Thomas Karagiannis et al. “BLINC: multilevel traffic classification in the dark.”
In: Proceedings of the 2005 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications. SIGCOMM ’05. Philadelphia, Penn-
sylvania, USA: Association for Computing Machinery, 2005, pp. 229–240. isbn:
1595930094 (cit. on p. 11).

[74] Ansam Khraisat et al. “Survey of intrusion detection systems: techniques,
datasets and challenges.” In: Cybersecurity 2 (Dec. 2019). doi: 10.1186/s42400-
019-0038-7 (cit. on pp. 31, 57).

[75] Hyunchul Kim et al. “Internet traffic classification demystified: myths, caveats,
and the best practices.” In: Proceedings of the 2008 ACM CoNEXT Conference.
CoNEXT ’08. Madrid, Spain: Association for Computing Machinery, 2008. isbn:
9781605582108 (cit. on p. 8).

[76] Georgios Kougioumtzidis et al. “A survey on multimedia services QoE as-
sessment and machine learning-based prediction.” In: Ieee Access 10 (2022),
pp. 19507–19538 (cit. on p. 12).

[77] Oliver Kramer et al. “Scikit-learn.” In: Machine learning for evolution strategies
(2016), pp. 45–53 (cit. on p. 62).

[78] Youjie Li et al. “Accelerating distributed reinforcement learning with in-switch
computing.” In: Proceedings of the 46th International Symposium on Computer
Architecture. 2019 (cit. on p. 17).

[79] Hongyu Liu et al. “Machine Learning and Deep Learning Methods for Intrusion
Detection Systems: A Survey.” en. In: Applied Sciences 9.20 (Jan. 2019). Number:
20 Publisher: Multidisciplinary Digital Publishing Institute, p. 4396. issn: 2076-
3417. doi: 10.3390/app9204396. url: https://www.mdpi.com/2076-3417/9/20/
4396 (visited on 03/22/2023) (cit. on p. 31).

[80] Shinan Liu et al. “Amir: Active multimodal interaction recognition from video
and network traffic in connected environments.” In: Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 7.1 (2023), pp. 1–26 (cit. on
pp. 57, 58, 67).

[81] Shinan Liu et al. ServeFlow: A Fast-Slow Model Architecture for Network Traffic
Analysis. 2024. arXiv: 2402.03694 [cs.NI]. url: https://arxiv.org/abs/2402.
03694 (cit. on pp. 13, 17, 45, 55, 57, 58, 60, 68).

[82] Jan Luxemburk et al. “Encrypted traffic classification: the QUIC case.” In: 2023
7th Network Traffic Measurement and Analysis Conference (TMA). 2023, pp. 1–10.
doi: 10.23919/TMA58422.2023.10199052 (cit. on p. 59).

[83] Minzhao Lyu et al. “A Survey on DNS Encryption: Current Development,
Malware Misuse, and Inference Techniques.” In: ACM Comput. Surv. 55.8 (Dec.
2022). issn: 0360-0300 (cit. on p. 9).

https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.3390/app9204396
https://www.mdpi.com/2076-3417/9/20/4396
https://www.mdpi.com/2076-3417/9/20/4396
https://arxiv.org/abs/2402.03694
https://arxiv.org/abs/2402.03694
https://arxiv.org/abs/2402.03694
https://doi.org/10.23919/TMA58422.2023.10199052

82 bibliography

[84] Reham Taher El-Maghraby et al. “A survey on deep packet inspection.” In: 2017
12th International Conference on Computer Engineering and Systems (ICCES). 2017,
pp. 188–197 (cit. on p. 8).

[85] Aniss Maghsoudlou et al. “Flowdns: correlating netflow and dns streams at
scale.” In: Proceedings of the 18th International Conference on Emerging Networking
EXperiments and Technologies. 2022, pp. 187–195 (cit. on p. 59).

[86] Tarun Mangla et al. “eMIMIC: Estimating HTTP-Based Video QoE Metrics
from Encrypted Network Traffic.” In: Network Traffic Measurement and Analysis
Conference (TMA). 2018 (cit. on pp. 31, 33, 35, 57).

[87] Tarun Mangla et al. “MIMIC: Using passive network measurements to estimate
HTTP-based adaptive video QoE metrics.” In: 2017 Network Traffic Measurement
and Analysis Conference (TMA). 2017, pp. 1–6. doi: 10.23919/TMA.2017.8002920
(cit. on p. 10).

[88] Tarun Mangla et al. “Using session modeling to estimate HTTP-based video
QoE metrics from encrypted network traffic.” In: IEEE Transactions on Network
and Service Management 16.3 (2019), pp. 1086–1099 (cit. on pp. 31, 35).

[89] Lara Mauri et al. “Estimating Degradation of Machine Learning Data Assets.”
In: J. Data and Information Quality (2021) (cit. on p. 19).

[90] M Hammad Mazhar et al. “Real-time video quality of experience monitoring
for https and quic.” In: IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE. 2018, pp. 1331–1339 (cit. on pp. 12, 33).

[91] Steven McCanne et al. “The BSD Packet Filter: A New Architecture for User-level
Packet Capture.” In: USENIX winter. Vol. 46. Citeseer. 1993, pp. 259–270 (cit. on
pp. 64, 69).

[92] Moka, A fast and concurrent cache library inspired by Java Caffeine. https://crates.io/crates/moka.
2021 (cit. on p. 66).

[93] Andrew W. Moore et al. “Toward the Accurate Identification of Network Ap-
plications.” In: Passive and Active Network Measurement. Ed. by Constantinos
Dovrolis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 41–54. isbn:
978-3-540-31966-5 (cit. on p. 8).

[94] M. Sajid Mushtaq et al. “Empirical study based on machine learning approach to
assess the QoS/QoE correlation.” In: 2012 17th European Conference on Networks
and Optical Communications. 2012, pp. 1–7. doi: 10.1109/NOC.2012.6249939
(cit. on p. 33).

[95] Raza Ul Mustafa et al. “EFFECTOR: DASH QoE and QoS Evaluation Frame-
work For EnCrypTed videO tRaffic.” In: NOMS 2023-2023 IEEE/IFIP Network
Operations and Management Symposium. 2023, pp. 1–8. doi: 10.1109/NOMS56928.
2023.10154448 (cit. on p. 33).

https://doi.org/10.23919/TMA.2017.8002920
https://doi.org/10.1109/NOC.2012.6249939
https://doi.org/10.1109/NOMS56928.2023.10154448
https://doi.org/10.1109/NOMS56928.2023.10154448

bibliography 83

[96] David Naylor et al. “The cost of the" s" in https.” In: Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies.
2014, pp. 133–140 (cit. on pp. 1, 57, 59).

[97] Netdev. Segmentation Offloads in the Linux Networking Stack. https://www.kernel.
org/doc/Documentation/networking/segmentation-offloads.txt. [Accessed
13-08-2025] (cit. on p. 14).

[98] Thuy T.T. Nguyen et al. “A comprehensive survey on machine learning for
networking: evolution, applications and research opportunities.” In: IEEE Com-
munications Surveys & Tutorials. 2008 (cit. on p. 31).

[99] Thuy T.T. Nguyen et al. “A survey of techniques for internet traffic classification
using machine learning.” In: IEEE Communications Surveys & Tutorials 10.4 (2008),
pp. 56–76 (cit. on p. 11).

[100] Irena Orsolic et al. “A machine learning approach to classifying YouTube QoE
based on encrypted network traffic.” In: Multimedia tools and applications 76.21

(2017), pp. 22267–22301 (cit. on p. 10).

[101] Eva Papadogiannaki et al. “A Survey on Encrypted Network Traffic Analysis
Applications, Techniques, and Countermeasures.” In: ACM Comput. Surv. 54.6
(July 2021). issn: 0360-0300 (cit. on pp. 33, 60).

[102] Ricardo Parizotto et al. “Offloading Machine Learning to Programmable Data
Planes: A Systematic Survey.” In: ACM Comput. Surv. 56.1 (Aug. 2023). issn:
0360-0300. doi: 10.1145/3605153. url: https://doi.org/10.1145/3605153
(cit. on pp. 17, 55).

[103] Vern Paxson. “Bro: a system for detecting network intruders in real-time.” In:
Computer Networks 31.23 (1999), pp. 2435–2463. issn: 1389-1286.

[104] Julien Piet et al. “GGFAST: Automating Generation of Flexible Network Traffic
Classifiers.” In: Proceedings of the ACM SIGCOMM 2023 Conference. Association
for Computing Machinery, 2023 (cit. on pp. 31, 32, 34, 45, 58, 67).

[105] J. Reynolds et al. Assigned Numbers. RFC 1340. July 1992 (cit. on p. 8).

[106] Shahbaz Rezaei et al. “Deep Learning for Encrypted Traffic Classification: An
Overview.” In: IEEE Communications Magazine 57.5 (2019), pp. 76–81. doi: 10.
1109/MCOM.2019.1800819 (cit. on pp. 12, 31).

[107] M. A. Ridwan et al. “Applications of Machine Learning in Networking: A Survey
of Current Issues and Future Challenges.” In: IEEE Access (2021).

[108] Martin Roesch. “Snort - Lightweight Intrusion Detection for Networks.” In:
Proceedings of the 13th USENIX Conference on System Administration. LISA ’99.
Seattle, Washington: USENIX Association, 1999, pp. 229–238 (cit. on p. 61).

https://www.kernel.org/doc/Documentation/networking/segmentation-offloads.txt
https://www.kernel.org/doc/Documentation/networking/segmentation-offloads.txt
https://doi.org/10.1145/3605153
https://doi.org/10.1145/3605153
https://doi.org/10.1109/MCOM.2019.1800819
https://doi.org/10.1109/MCOM.2019.1800819

84 bibliography

[109] Francisco Romero et al. “INFaaS: Automated Model-less Inference Serving.” In:
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association,
July 2021, pp. 397–411. isbn: 978-1-939133-23-6. url: https://www.usenix.org/
conference/atc21/presentation/romero (cit. on pp. 32, 34, 55).

[110] Kurt Rosenthal. The 2025 Global Internet Phenomena Report. en. Tech. rep. Accessed:
2025-8-8. Mar. 2025. url: https://www.applogicnetworks.com/blog/the-2025-
global-internet-phenomena-report (cit. on p. 10).

[111] Hugo Sadok et al. “Enso: A Streaming Interface for NIC-Application Communi-
cation.” In: 17th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 23). Boston, MA: USENIX Association, July 2023, pp. 1005–1025.
isbn: 978-1-939133-34-2. url: https://www.usenix.org/conference/osdi23/
presentation/sadok (cit. on p. 14).

[112] Hugo Sadok et al. “Enso: A Streaming Interface for NIC-Application Communi-
cation.” In: 17th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 23). Boston, MA: USENIX Association, July 2023, pp. 1005–1025.
isbn: 978-1-939133-34-2. url: https://www.usenix.org/conference/osdi23/
presentation/sadok (cit. on p. 54).

[113] Mehran Salmani et al. “Reconciling High Accuracy, Cost-Efficiency, and Low
Latency of Inference Serving Systems.” In: Proceedings of the 3rd Workshop on
Machine Learning and Systems. EuroMLSys ’23. Rome, Italy: Association for
Computing Machinery, 2023, pp. 78–86. isbn: 9798400700842. doi: 10.1145/
3578356.3592578. url: https://doi.org/10.1145/3578356.3592578 (cit. on
p. 55).

[114] Raimund Schatz et al. “From Packets to People: Quality of Experience as a
New Measurement Challenge.” In: Data Traffic Monitoring and Analysis: From
Measurement, Classification, and Anomaly Detection to Quality of Experience. Ed.
by Ernst Biersack et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 219–263. isbn: 978-3-642-36784-7. doi: 10.1007/978-3-642-36784-7_10. url:
https://doi.org/10.1007/978-3-642-36784-7_10 (cit. on p. 9).

[115] Satadal Sengupta et al. “Exploiting Diversity in Android TLS Implementations
for Mobile App Traffic Classification.” In: The World Wide Web Conference. Associ-
ation for Computing Machinery, 2019 (cit. on p. 20).

[116] Tal Shapira et al. “FlowPic: A Generic Representation for Encrypted Traffic
Classification and Applications Identification.” In: IEEE Transactions on Network
and Service Management. 2021 (cit. on pp. 13, 31, 45, 46, 63).

[117] Taveesh Sharma et al. “Estimating WebRTC Video QoE Metrics Without Using
Application Headers.” In: ACM SIGCOMM Internet Measurement Conference
(IMC). Montreal, Canada, Oct. 2023, pp. 1–12 (cit. on pp. 31, 35, 57).

https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://www.applogicnetworks.com/blog/the-2025-global-internet-phenomena-report
https://www.applogicnetworks.com/blog/the-2025-global-internet-phenomena-report
https://www.usenix.org/conference/osdi23/presentation/sadok
https://www.usenix.org/conference/osdi23/presentation/sadok
https://www.usenix.org/conference/osdi23/presentation/sadok
https://www.usenix.org/conference/osdi23/presentation/sadok
https://doi.org/10.1145/3578356.3592578
https://doi.org/10.1145/3578356.3592578
https://doi.org/10.1145/3578356.3592578
https://doi.org/10.1007/978-3-642-36784-7_10
https://doi.org/10.1007/978-3-642-36784-7_10

bibliography 85

[118] Wazen M Shbair et al. “Improving sni-based https security monitoring.” In: 2016
IEEE 36th International Conference on Distributed Computing Systems Workshops
(ICDCSW). IEEE. 2016, pp. 72–77 (cit. on pp. 57, 59).

[119] Wazen M. Shbair et al. “Efficiently bypassing SNI-based HTTPS filtering.” In:
2015 IFIP/IEEE International Symposium on Integrated Network Management (IM).
2015, pp. 990–995 (cit. on pp. 9, 57, 59).

[120] Wazen M. Shbair et al. Early Identification of Services in HTTPS Traffic. 2020. arXiv:
2008.08350 [cs.CR]. url: https://arxiv.org/abs/2008.08350 (cit. on p. 60).

[121] Meng Shen et al. “DeepQoE: Real-time measurement of video QoE from en-
crypted traffic with deep learning.” In: 2020 IEEE/ACM 28th International Sympo-
sium on Quality of Service (IWQoS). IEEE. 2020, pp. 1–10 (cit. on p. 12).

[122] Meng Shen et al. “Machine Learning-Powered Encrypted Network Traffic Anal-
ysis: A Comprehensive Survey.” In: IEEE Communications Surveys & Tutorials 25.1
(2023), pp. 791–824. doi: 10.1109/COMST.2022.3208196 (cit. on pp. 11, 12, 33,
64).

[123] Jayveer Singh et al. “A survey on machine learning techniques for intrusion
detection systems.” In: International Journal of Advanced Research in Computer and
Communication Engineering. 2013 (cit. on p. 31).

[124] Lea Skorin-Kapov et al. “A Survey of Emerging Concepts and Challenges for
QoE Management of Multimedia Services.” In: ACM Trans. Multimedia Comput.
Commun. Appl. 14.2s (May 2018). issn: 1551-6857. doi: 10.1145/3176648. url:
https://doi.org/10.1145/3176648 (cit. on p. 9).

[125] Suricata, Observe. Protect. Adapt. https://suricata.io/. 2023.

[126] Tushar Swamy et al. “Homunculus: Auto-Generating Efficient Data-Plane ML
Pipelines for Datacenter Networks.” In: Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3. 2023 (cit. on p. 17).

[127] Tcpdump, and libpcap. https://www.tcpdump.org/. 2023 (cit. on p. 17).

[128] Brian Trammell et al. “An introduction to IP flow information export (IPFIX).”
In: IEEE Communications Magazine 49.4 (2011), pp. 89–95 (cit. on p. 2).

[129] Martino Trevisan et al. “Impact of Access Speed on Adaptive Video Streaming
Quality: A Passive Perspective.” In: Proceedings of the 2016 Workshop on QoE-
Based Analysis and Management of Data Communication Networks. Internet-QoE
’16. Florianopolis, Brazil: Association for Computing Machinery, 2016, pp. 7–12.
isbn: 9781450344258. doi: 10.1145/2940136.2940139. url: https://doi.org/
10.1145/2940136.2940139 (cit. on p. 10).

https://arxiv.org/abs/2008.08350
https://arxiv.org/abs/2008.08350
https://doi.org/10.1109/COMST.2022.3208196
https://doi.org/10.1145/3176648
https://doi.org/10.1145/3176648
https://doi.org/10.1145/2940136.2940139
https://doi.org/10.1145/2940136.2940139
https://doi.org/10.1145/2940136.2940139

86 bibliography

[130] Martino Trevisan et al. “Towards web service classification using addresses
and DNS.” In: 2016 International Wireless Communications and Mobile Computing
Conference (IWCMC). IEEE. 2016, pp. 38–43 (cit. on p. 59).

[131] TRex, Realistic Traffic Generator. https://trex-tgn.cisco.com. 2023 (cit. on pp. 35,
46).

[132] Aad Van Moorsel. “Metrics for the internet age: Quality of experience and
quality of business.” In: Fifth International Workshop on Performability Modeling of
Computer and Communication Systems, Arbeitsberichte des Instituts für Informatik,
Universität Erlangen-Nürnberg, Germany. Vol. 34. 13. Citeseer. 2001, pp. 26–31

(cit. on p. 10).

[133] Julio Costella Vicenzi et al. “Adaptive Inference on Reconfigurable SmartNICs
for Traffic Classification.” In: Advanced Information Networking and Applications.
Ed. by Leonard Barolli. Cham: Springer International Publishing, 2023, pp. 137–
148. isbn: 978-3-031-28451-9 (cit. on pp. 13, 14, 40, 55, 72).

[134] Gerry Wan et al. “Retina: analyzing 100GbE traffic on commodity hardware.” In:
Proceedings of the ACM SIGCOMM 2022 Conference. SIGCOMM ’22. Amsterdam,
Netherlands: Association for Computing Machinery, 2022, pp. 530–544. isbn:
9781450394208 (cit. on pp. 13, 35, 44, 47, 54, 57, 69).

[135] Gerry Wan et al. “CATO: End-to-End Optimization of ML-Based Traffic Anal-
ysis Pipelines.” In: 22nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI 25). Philadelphia, PA: USENIX Association, Apr. 2025,
pp. 1523–1540. isbn: 978-1-939133-46-5 (cit. on pp. 17, 31, 32, 34, 38, 41, 47, 55,
57, 58, 60, 64).

[136] Pan Wang et al. “A survey of techniques for mobile service encrypted traffic
classification using deep learning.” In: Ieee Access 7 (2019), pp. 54024–54033

(cit. on p. 12).

[137] Duo Wu et al. “Mansy: Generalizing neural adaptive immersive video streaming
with ensemble and representation learning.” In: IEEE Transactions on Mobile
Computing (2024) (cit. on p. 12).

[138] Xiaoban Wu et al. “Network measurement for 100 GbE network links using
multicore processors.” In: Future Gener. Comput. Syst. 79.P1 (Feb. 2018), pp. 180–
189. issn: 0167-739X. doi: 10.1016/j.future.2017.04.038. url: https://doi.
org/10.1016/j.future.2017.04.038 (cit. on p. 44).

[139] Zhaoqi Xiong et al. “Do Switches Dream of Machine Learning? Toward In-
Network Classification.” In: Proceedings of the 18th ACM Workshop on Hot Topics
in Networks. HotNets ’19. Princeton, NJ, USA: Association for Computing Ma-
chinery, 2019, pp. 25–33. isbn: 9781450370202. doi: 10.1145/3365609.3365864.
url: https://doi.org/10.1145/3365609.3365864 (cit. on pp. 14, 55).

https://doi.org/10.1016/j.future.2017.04.038
https://doi.org/10.1016/j.future.2017.04.038
https://doi.org/10.1016/j.future.2017.04.038
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1145/3365609.3365864

bibliography 87

[140] Chengcheng Xu et al. “A Survey on Regular Expression Matching for Deep
Packet Inspection: Applications, Algorithms, and Hardware Platforms.” In: IEEE
Communications Surveys & Tutorials 18.4 (2016), pp. 2991–3029 (cit. on p. 8).

[141] Kazuhisa Yamagishi et al. “Parametric Quality-Estimation Model for Adaptive-
Bitrate-Streaming Services.” In: IEEE Transactions on Multimedia 19.7 (2017),
pp. 1545–1557. doi: 10.1109/TMM.2017.2669859 (cit. on p. 10).

[142] Baris Yamansavascilar et al. “Application identification via network traffic classi-
fication.” In: 2017 International Conference on Computing, Networking and Commu-
nications (ICNC). 2017, pp. 843–848. doi: 10.1109/ICCNC.2017.7876241 (cit. on
p. 45).

[143] Chen Yang et al. “Anti-Packet-Loss Encrypted Traffic Classification via Masked
Autoencoder.” In: Wireless Artificial Intelligent Computing Systems and Applications.
2025 (cit. on p. 19).

[144] Jeff (Jun) Zhang et al. “Model-switching: dealing with fluctuating workloads in
machine-learning-as-a-service systems.” In: Proceedings of the 12th USENIX Con-
ference on Hot Topics in Cloud Computing. HotCloud’20. USA: USENIX Association,
2020 (cit. on p. 55).

[145] Qizheng Zhang et al. “CARAVAN: practical online learning of in-network ML
models with labeling agents.” In: Proceedings of the 3rd Workshop on Practical
Adoption Challenges of ML for Systems. 2024, pp. 17–20 (cit. on pp. 57, 58).

[146] Yuqi Zhao et al. “The Sweet Danger of Sugar: Debunking Representation Learn-
ing for Encrypted Traffic Classification.” In: arXiv preprint arXiv:2507.16438 (2025)
(cit. on p. 12).

[147] Zhipeng Zhao et al. “Achieving 100Gbps Intrusion Prevention on a Single
Server.” In: 14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20). USENIX Association, Nov. 2020, pp. 1083–1100. isbn: 978-1-
939133-19-9. url: https://www.usenix.org/conference/osdi20/presentation/
zhao-zhipeng (cit. on p. 33).

[148] Jiuxing Zhou et al. “Challenges and Advances in Analyzing TLS 1.3-Encrypted
Traffic: A Comprehensive Survey.” In: Electronics 13.20 (2024). issn: 2079-9292.
doi: 10.3390/electronics13204000. url: https://www.mdpi.com/2079-9292/
13/20/4000 (cit. on p. 33).

https://doi.org/10.1109/TMM.2017.2669859
https://doi.org/10.1109/ICCNC.2017.7876241
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://doi.org/10.3390/electronics13204000
https://www.mdpi.com/2079-9292/13/20/4000
https://www.mdpi.com/2079-9292/13/20/4000

	Dedication
	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.1.1 Machine learning for Network Traffic Monitoring
	1.1.2 Machine Learning End-to-End pipeline
	1.1.3 Real-world constraints

	1.2 Problem Statement
	1.3 Thesis contributions
	1.4 Organization

	2 Background and Related Work
	2.1 Network Traffic Monitoring
	2.1.1 Overview of Network Traffic Monitoring
	2.1.2 Traditional Traffic Classification Techniques
	2.1.3 QoE Monitoring

	2.2 ML-based Network Monitoring
	2.2.1 ML-based Traffic Classification
	2.2.2 ML-based QoE Inference

	2.3 Monitoring with System Constraints
	2.3.1 Model Pruning
	2.3.2 Feature Engineering
	2.3.3 Optimized Software
	2.3.4 Dedicated Hardware

	2.4 Limitation of Current Approaches

	3 The Cost of Packet Loss on ML-Based Traffic Analysis
	3.1 Introduction
	3.2 Related Work
	3.3 Methodology
	3.3.1 Traffic analysis tasks
	3.3.2 Dataset and Model Training
	3.3.3 Loss Models

	3.4 Analysis
	3.4.1 Service Identification
	3.4.2 Video Startup Delay Inference

	3.5 Conclusion

	4 Cruise Control: Dynamic Model Selection for ML-Based Network Traffic Analysis
	4.1 Introduction
	4.2 Background and Motivation
	4.2.1 ML-Based Traffic Analysis
	4.2.2 Downsides of Static Model Selection
	4.2.3 The Accuracy Costs of Packet Loss

	4.3 Cruise Control
	4.3.1 System Configuration
	4.3.2 Dynamic Feature Computation
	4.3.3 Adaptive Model Selection

	4.4 Prototype Implementation
	4.4.1 Software prototype
	4.4.2 Use Cases

	4.5 Evaluation
	4.5.1 Performance Under Varying Workloads
	4.5.2 System Overhead
	4.5.3 Multi-core Scalability
	4.5.4 Multitask Support
	4.5.5 Sensitivity to Parameters

	4.6 Related work
	4.7 Conclusion

	5 Lo-Fi: Low-Cost Early Application Filter Based on Cached ML Decisions
	5.1 Introduction
	5.2 Related Work
	5.3 Lo-Fi
	5.3.1 Low-cost early application filter
	5.3.2 System Workflow
	5.3.3 Capitalize on past decisions

	5.4 Evaluation
	5.4.1 Prototype Implementation
	5.4.2 Overall performances
	5.4.3 ML performances
	5.4.4 Short-Circuit performance

	5.5 Conclusion

	6 Conclusions
	6.1 Contributions
	6.2 Perspectives
	6.2.1 Hardware optimization
	6.2.2 Network traffic prediction
	6.2.3 ML-related metrics
	6.2.4 Closing the loop

	Back Matter
	Bibliography

